Spaces:
Running
Running
alessandro trinca tornidor
test: start refactor tests based on mutation tests from cosmic-ray
ac226c8
import json | |
import os | |
import platform | |
import unittest | |
from aip_trainer import app_logger | |
from aip_trainer.lambdas import lambdaSpeechToScore | |
from tests import EVENTS_FOLDER | |
text_dict = {"de": "Ich bin Alex, wer bist du?", "en": "Hi there, how are you?"} | |
expected_output = { | |
"de": { | |
"real_transcript": text_dict["de"], | |
"ipa_transcript": "\u026a\u00e7 bi\u02d0n a\u02d0l\u025bksv\u025b\u02d0 b\u025bst\u025b\u02d0 du\u02d0", | |
"pronunciation_accuracy": 63.0, | |
"real_transcripts": text_dict["de"], | |
"matched_transcripts": "ich bin alexwe - beste du", | |
"real_transcripts_ipa": "\u026a\u00e7 bi\u02d0n a\u02d0l\u025bks, v\u0250 b\u026ast du\u02d0?", | |
"matched_transcripts_ipa": "\u026a\u00e7 bi\u02d0n a\u02d0l\u025bksv\u0259 - b\u0259st\u0259 du\u02d0", | |
"pair_accuracy_category": "0 0 2 2 2 0", | |
"start_time": "0.0 0.3075 0.62525 2.1346875 1.5785625 2.1346875", | |
"end_time": "0.328 0.6458125 1.44025 2.4730625 2.15525 2.4730625", | |
"is_letter_correct_all_words": "111 111 11111 000 1011 111 ", | |
}, | |
"en": { | |
"real_transcript": text_dict["en"], | |
"ipa_transcript": "ha\u026a ha\u028a \u0259r ju", | |
"pronunciation_accuracy": 69.0, | |
"real_transcripts": text_dict["en"], | |
"matched_transcripts": "hi - how are you", | |
"real_transcripts_ipa": "ha\u026a \u00f0\u025br, ha\u028a \u0259r ju?", | |
"matched_transcripts_ipa": "ha\u026a ha\u028a \u0259r ju", | |
"pair_accuracy_category": "0 2 0 0 0", | |
"start_time": "0.2245625 1.3228125 0.852125 1.04825 1.3228125", | |
"end_time": "0.559875 1.658125 1.14825 1.344375 1.658125", | |
"is_letter_correct_all_words": "11 000001 111 111 1111 ", | |
}, | |
} | |
def assert_raises_get_speech_to_score_dict(self, real_text, file_bytes_or_audiotmpfile, language, exc, error_message): | |
from aip_trainer.lambdas import lambdaSpeechToScore | |
with self.assertRaises(exc): | |
try: | |
lambdaSpeechToScore.get_speech_to_score_dict( | |
real_text, file_bytes_or_audiotmpfile, language, remove_random_file=False | |
) | |
except exc as e: | |
self.assertEqual(str(e), error_message) | |
raise e | |
def check_value_by_field(value, match): | |
import re | |
assert len(value.strip()) > 0 | |
for word in value.lstrip().rstrip().split(" "): | |
word_check = re.findall(match, word.strip()) | |
assert len(word_check) == 1 | |
assert word_check[0] == word.strip() | |
def check_output_by_field(output, key, match, expected_output): | |
check_value_by_field(output[key], match) | |
output[key] = expected_output[key] | |
return output | |
def check_output(self, output, expected_output): | |
self.maxDiff = None | |
try: | |
assert len(output["matched_transcripts"].strip()) > 0 | |
assert len(output["matched_transcripts_ipa"].strip()) > 0 | |
assert len(output["ipa_transcript"].strip()) > 0 | |
assert len(output["real_transcripts_ipa"].strip()) > 0 | |
output = check_output_by_field( | |
output, "is_letter_correct_all_words", "[01]+", expected_output | |
) | |
output = check_output_by_field(output, "end_time", "\d+\.\d+", expected_output) | |
output = check_output_by_field( | |
output, "start_time", "\d+\.\d+", expected_output | |
) | |
pronunciation_accuracy = output["pronunciation_accuracy"] | |
assert isinstance(pronunciation_accuracy, float) | |
assert pronunciation_accuracy <= 100 | |
output["matched_transcripts"] = expected_output["matched_transcripts"] | |
output["matched_transcripts_ipa"] = expected_output["matched_transcripts_ipa"] | |
output["pronunciation_accuracy"] = expected_output["pronunciation_accuracy"] | |
output["pair_accuracy_category"] = expected_output["pair_accuracy_category"] | |
output["ipa_transcript"] = expected_output["ipa_transcript"] | |
output["real_transcript"] = expected_output["real_transcript"] | |
output["real_transcripts_ipa"] = expected_output["real_transcripts_ipa"] | |
self.assertDictEqual(expected_output, output) | |
except Exception as e: | |
app_logger.error(f"e:{e}.") | |
raise e | |
class TestGetAccuracyFromRecordedAudio(unittest.TestCase): | |
def setUp(self): | |
if platform.system() == "Windows" or platform.system() == "Win32": | |
os.environ["PYTHONUTF8"] = "1" | |
def tearDown(self): | |
if ( | |
platform.system() == "Windows" or platform.system() == "Win32" | |
) and "PYTHONUTF8" in os.environ: | |
del os.environ["PYTHONUTF8"] | |
def test_GetAccuracyFromRecordedAudio(self): | |
with open(EVENTS_FOLDER / "GetAccuracyFromRecordedAudio.json", "r") as src: | |
inputs_outputs = json.load(src) | |
inputs = inputs_outputs["inputs"] | |
outputs = inputs_outputs["outputs"] | |
for event_name, event_content in inputs.items(): | |
current_expected_output = outputs[event_name] | |
output = lambdaSpeechToScore.lambda_handler(event_content, []) | |
output = json.loads(output) | |
app_logger.info( | |
f"output type:{type(output)}, expected_output type:{type(current_expected_output)}." | |
) | |
check_output(self, output, current_expected_output) | |
def test_get_speech_to_score_en_ok(self): | |
from aip_trainer.lambdas import lambdaSpeechToScore | |
language = "en" | |
path = EVENTS_FOLDER / f"test_{language}.wav" | |
output = lambdaSpeechToScore.get_speech_to_score_dict( | |
real_text=text_dict[language], | |
file_bytes_or_audiotmpfile=str(path), | |
language=language, | |
remove_random_file=False, | |
) | |
check_output(self, output, expected_output[language]) | |
def test_get_speech_to_score_en_ok_remove_input_file(self): | |
import shutil | |
from aip_trainer.lambdas import lambdaSpeechToScore | |
language = "en" | |
path = EVENTS_FOLDER / f"test_{language}.wav" | |
path2 = EVENTS_FOLDER / f"test2_{language}.wav" | |
shutil.copy(path, path2) | |
assert path2.exists() and path2.is_file() | |
output = lambdaSpeechToScore.get_speech_to_score_dict( | |
real_text=text_dict[language], | |
file_bytes_or_audiotmpfile=str(path2), | |
language=language, | |
remove_random_file=True, | |
) | |
assert not path2.exists() | |
check_output(self, output, expected_output[language]) | |
def test_get_speech_to_score_de_ok(self): | |
from aip_trainer.lambdas import lambdaSpeechToScore | |
language = "de" | |
path = EVENTS_FOLDER / f"test_{language}.wav" | |
output = lambdaSpeechToScore.get_speech_to_score_dict( | |
real_text=text_dict[language], | |
file_bytes_or_audiotmpfile=str(path), | |
language=language, | |
remove_random_file=False, | |
) | |
check_output(self, output, expected_output[language]) | |
def test_get_speech_to_score_de_ok_remove_input_file(self): | |
import shutil | |
from aip_trainer.lambdas import lambdaSpeechToScore | |
language = "de" | |
path = EVENTS_FOLDER / f"test_{language}.wav" | |
path2 = EVENTS_FOLDER / f"test2_{language}.wav" | |
shutil.copy(path, path2) | |
assert path2.exists() and path2.is_file() | |
output = lambdaSpeechToScore.get_speech_to_score_dict( | |
real_text=text_dict[language], | |
file_bytes_or_audiotmpfile=str(path2), | |
language=language, | |
remove_random_file=True, | |
) | |
assert not path2.exists() | |
check_output(self, output, expected_output[language]) | |
def test_get_speech_to_score_tuple_de_ok(self): | |
from aip_trainer.lambdas import lambdaSpeechToScore | |
language = "de" | |
path = EVENTS_FOLDER / f"test_{language}.wav" | |
( | |
real_transcripts, | |
is_letter_correct_all_words, | |
pronunciation_accuracy, | |
ipa_transcript, | |
real_transcripts_ipa, | |
dumped, | |
) = lambdaSpeechToScore.get_speech_to_score_tuple( | |
real_text=text_dict[language], | |
file_bytes_or_audiotmpfile=str(path), | |
language=language, | |
remove_random_file=False, | |
) | |
assert real_transcripts == text_dict[language] | |
check_value_by_field(is_letter_correct_all_words, "[01]+") | |
assert isinstance(pronunciation_accuracy, float) | |
assert pronunciation_accuracy <= 100 | |
assert len(ipa_transcript.strip()) > 0 | |
assert len(real_transcripts_ipa.strip()) > 0 | |
check_output(self, json.loads(dumped), expected_output[language]) | |
def test_get_speech_to_score_tuple_en_ok(self): | |
from aip_trainer.lambdas import lambdaSpeechToScore | |
language = "en" | |
path = EVENTS_FOLDER / f"test_{language}.wav" | |
( | |
real_transcripts, | |
is_letter_correct_all_words, | |
pronunciation_accuracy, | |
ipa_transcript, | |
real_transcripts_ipa, | |
dumped, | |
) = lambdaSpeechToScore.get_speech_to_score_tuple( | |
real_text=text_dict[language], | |
file_bytes_or_audiotmpfile=str(path), | |
language=language, | |
remove_random_file=False, | |
) | |
assert real_transcripts == text_dict[language] | |
check_value_by_field(is_letter_correct_all_words, "[01]+") | |
assert isinstance(pronunciation_accuracy, float) | |
assert pronunciation_accuracy <= 100 | |
assert len(ipa_transcript.strip()) > 0 | |
assert len(real_transcripts_ipa.strip()) > 0 | |
check_output(self, json.loads(dumped), expected_output[language]) | |
def test_get_speech_to_score_dict__de_empty_input_text(self): | |
language = "de" | |
path = EVENTS_FOLDER / f"test_{language}.wav" | |
assert_raises_get_speech_to_score_dict(self, "", str(path), language, ValueError, "cannot read an empty/None text: ''...") | |
def test_get_speech_to_score_dict__en_empty_input_text(self): | |
language = "en" | |
path = EVENTS_FOLDER / f"test_{language}.wav" | |
assert_raises_get_speech_to_score_dict(self, "", str(path), language, ValueError, "cannot read an empty/None text: ''...") | |
def test_get_speech_to_score_dict__de_empty_input_file(self): | |
language = "de" | |
assert_raises_get_speech_to_score_dict(self, "text fake", "", language, ValueError, "cannot read an empty/None file: ''...") | |
def test_get_speech_to_score_dict__en_empty_input_file(self): | |
language = "en" | |
assert_raises_get_speech_to_score_dict(self, "text fake", "", language, ValueError, "cannot read an empty/None file: ''...") | |
def test_get_speech_to_score_dict__empty_language(self): | |
assert_raises_get_speech_to_score_dict(self, "text fake", "fake_file", "", NotImplementedError, "Not tested/supported with '' language...") | |
if __name__ == "__main__": | |
unittest.main() | |