Spaces:
Running
Running
import unittest | |
import numpy as np | |
from aip_trainer.lambdas import lambdaSpeechToScore | |
from aip_trainer.utils.utilities import hash_calculate | |
from tests import EVENTS_FOLDER | |
input_file_test_de = EVENTS_FOLDER / "test_de.wav" | |
hash_input = hash_calculate(input_file_test_de, is_file=True) | |
assert hash_input == b'tGNDknDQRwCAx4LJ88Ft3y2+YAxcqXW7GAqasxxZoBw=' | |
class TestCalcStartEnd(unittest.TestCase): | |
def test_calc_start_end_zero_offset(self): | |
output = lambdaSpeechToScore.calc_start_end(48000, 0.0, 2) | |
self.assertEqual(output, 0) | |
def test_calc_start_end_non_zero_offset(self): | |
output = lambdaSpeechToScore.calc_start_end(48000, 1.0, 2) | |
self.assertEqual(output, 96000) | |
def test_calc_start_end_fractional_offset(self): | |
output = lambdaSpeechToScore.calc_start_end(48000, 0.5, 2) | |
self.assertEqual(output, 48000) | |
def test_calc_start_end_high_sample_rate(self): | |
output = lambdaSpeechToScore.calc_start_end(96000, 1.0, 2) | |
self.assertEqual(output, 192000) | |
def test_calc_start_end_low_sample_rate(self): | |
output = lambdaSpeechToScore.calc_start_end(24000, 1.0, 2) | |
self.assertEqual(output, 48000) | |
def test_calc_start_end_very_low_sample_rate(self): | |
output = lambdaSpeechToScore.calc_start_end(8000, 1.0, 2) | |
self.assertEqual(output, 16000) | |
def test_calc_start_end_single_channel(self): | |
output = lambdaSpeechToScore.calc_start_end(48000, 1.0, 1) | |
self.assertEqual(output, 48000) | |
def test_calc_start_end_multiple_channels(self): | |
output = lambdaSpeechToScore.calc_start_end(48000, 1.0, 4) | |
self.assertEqual(output, 48000 * 4) | |
# class TestAudioReadLoad(unittest.TestCase): | |
def test_audioread_load_full_file(self): | |
signal, sr_native = lambdaSpeechToScore.audioread_load(input_file_test_de) | |
self.assertEqual(sr_native, 44100) | |
self.assertEqual( | |
signal.shape[0], 129653 | |
) # Assuming the audio file is ~2,93 seconds long (107603 / 44100) | |
hash_output = hash_calculate(signal, is_file=False) | |
self.assertEqual(hash_output, b'3bfNuuMk0ov5+E77cUZmzjijfBUaMxuy1mrPmyjFyeo=') | |
def test_audioread_load_with_offset(self): | |
signal, sr_native = lambdaSpeechToScore.audioread_load(input_file_test_de, offset=0.5) | |
self.assertEqual(sr_native, 44100) | |
self.assertAlmostEqual(signal.shape[0], 107603) # audio file is ~2.44 seconds long (107603 / 44100), offset is 0.5 seconds | |
hash_output = hash_calculate(signal, is_file=False) | |
self.assertEqual(hash_output, b'QiDTDSZ4xAUniANNz4M43oa2FwpTSjvzW3IsKyqCVeE=') | |
def test_audioread_load_with_duration(self): | |
signal, sr_native = lambdaSpeechToScore.audioread_load(input_file_test_de, duration=129653 / 44100) | |
self.assertEqual(sr_native, 44100) | |
self.assertEqual(signal.shape[0], 129653) # Assuming the duration is ~2,93 seconds long (129653 / 44100) | |
hash_output = hash_calculate(signal, is_file=False) | |
self.assertEqual(hash_output, b'3bfNuuMk0ov5+E77cUZmzjijfBUaMxuy1mrPmyjFyeo=') | |
def test_audioread_load_with_offset_and_duration(self): | |
signal, sr_native = lambdaSpeechToScore.audioread_load(input_file_test_de, offset=0.5, duration=129653 / 44100) | |
self.assertEqual(sr_native, 44100) | |
self.assertEqual(signal.shape[0], 107603) # Assuming the duration is 5 seconds starting from 2 seconds offset | |
hash_output = hash_calculate(signal, is_file=False) | |
self.assertEqual(hash_output, b'QiDTDSZ4xAUniANNz4M43oa2FwpTSjvzW3IsKyqCVeE=') | |
def test_audioread_load_empty_file(self): | |
# import soundfile as sf | |
# import numpy as np | |
# signal, sr_native = lambdaSpeechToScore.audioread_load(input_file_test_de, offset=5, duration=129653 / 44100) | |
# sf.write(EVENTS_FOLDER / "test_empty.wav", data=signal, samplerate=44100) | |
input_empty = EVENTS_FOLDER / "test_empty.wav" | |
hash_input_empty = hash_calculate(input_empty, is_file=True) | |
self.assertEqual(hash_input_empty, b'i4+6/oZ5B2RUQpdW+nLxHV9ELIc4HMakKFRR2Cap5ik=') | |
signal, sr_native = lambdaSpeechToScore.audioread_load(input_empty) | |
self.assertEqual(sr_native, 44100) | |
self.assertEqual(signal.shape, (0, )) # Assuming the file is empty | |
hash_output = hash_calculate(signal, is_file=False) | |
self.assertEqual(hash_output, b'47DEQpj8HBSa+/TImW+5JCeuQeRkm5NMpJWZG3hSuFU=') | |
class TestBufToFloat(unittest.TestCase): | |
def test_buf_to_float_2_bytes(self): | |
int_buffer = np.array([0, 32767, -32768], dtype=np.int16).tobytes() | |
expected_output = np.array([0.0, 1.0, -1.0], dtype=np.float32) | |
output = lambdaSpeechToScore.buf_to_float(int_buffer, n_bytes=2, dtype=np.float32) | |
np.testing.assert_array_almost_equal(output, expected_output, decimal=3) | |
def test_buf_to_float_1_byte(self): | |
int_buffer = np.array([0, 127, -128], dtype=np.int8).tobytes() | |
expected_output = np.array([0.0, 0.9921875, -1.0], dtype=np.float32) | |
output = lambdaSpeechToScore.buf_to_float(int_buffer, n_bytes=1, dtype=np.float32) | |
np.testing.assert_array_almost_equal(output, expected_output, decimal=3) | |
def test_buf_to_float_4_bytes(self): | |
int_buffer = np.array([0, 2147483647, -2147483648], dtype=np.int32).tobytes() | |
expected_output = np.array([0.0, 1.0, -1.0], dtype=np.float32) | |
output = lambdaSpeechToScore.buf_to_float(int_buffer, n_bytes=4, dtype=np.float32) | |
np.testing.assert_array_almost_equal(output, expected_output, decimal=3) | |
def test_buf_to_float_custom_dtype(self): | |
int_buffer = np.array([0, 32767, -32768], dtype=np.int16).tobytes() | |
expected_output = np.array([0.0, 0.999969482421875, -1.0], dtype=np.float64) | |
output = lambdaSpeechToScore.buf_to_float(int_buffer, n_bytes=2, dtype=np.float64) | |
np.testing.assert_array_almost_equal(output, expected_output, decimal=3) | |
def test_buf_to_float_empty_buffer(self): | |
int_buffer = np.array([], dtype=np.int16).tobytes() | |
expected_output = np.array([], dtype=np.float32) | |
output = lambdaSpeechToScore.buf_to_float(int_buffer, n_bytes=2, dtype=np.float32) | |
np.testing.assert_array_almost_equal(output, expected_output, decimal=3) | |
def test_buf_to_float_512_bytes(self): | |
import json | |
float_arr = np.arange(-256, 256, dtype=np.float32) | |
float_buffer = float_arr.tobytes() | |
output = lambdaSpeechToScore.buf_to_float(float_buffer, dtype=np.float32) # default n_bytes=2 | |
hash_output = hash_calculate(output, is_file=False) | |
# serialized = serialize.serialize(output) | |
# with open(EVENTS_FOLDER / "test_float_buffer.json", "w") as f: | |
# json.dump(serialized, f) | |
with open(EVENTS_FOLDER / "test_float_buffer.json", "r") as f: | |
expected = f.read() | |
expected_output = np.asarray(json.loads(expected), dtype=np.float32) | |
hash_expected_output = hash_calculate(expected_output, is_file=False) | |
assert hash_output == hash_expected_output | |
np.testing.assert_array_almost_equal(output, expected_output) | |
if __name__ == "__main__": | |
unittest.main() | |