alessandro trinca tornidor
feat: add score DE and EN components
6777887
raw
history blame
7.29 kB
import json
from pathlib import Path
import gradio as gr
from aip_trainer import PROJECT_ROOT_FOLDER, app_logger, sample_rate_start
from aip_trainer.lambdas import js, lambdaGetSample, lambdaSpeechToScore, lambdaTTS
def clear():
return None
def clear2():
return None, None
with gr.Blocks() as gradio_app:
app_logger.info("start gradio app building...")
project_root_folder = Path(PROJECT_ROOT_FOLDER)
with open(project_root_folder / "aip_trainer" / "lambdas" / "app_description.md", "r", encoding="utf-8") as app_description_src:
app_description = app_description_src.read()
gr.Markdown(app_description.format(sample_rate_start=sample_rate_start))
with gr.Row():
with gr.Column(scale=4, min_width=300):
with gr.Row():
with gr.Column(scale=2, min_width=80):
language = gr.Radio(["de", "en"], label="Language", value="en")
with gr.Column(scale=5, min_width=160):
difficulty = gr.Radio(
label="Difficulty",
value=0,
choices=[
("random", 0),
("easy", 1),
("medium", 2),
("hard", 3),
],
)
with gr.Column(scale=1, min_width=100):
btn_random_phrase = gr.Button(value="Choose a random phrase")
with gr.Row():
with gr.Column(scale=7, min_width=300):
learner_transcription = gr.Textbox(
lines=3,
label="Learner Transcription",
value="Hi there, how are you?",
)
with gr.Row():
with gr.Column(scale=7, min_width=240):
audio_tts = gr.Audio(label="Audio TTS")
with gr.Column(scale=1, min_width=50):
btn_run_tts = gr.Button(value="Run TTS")
btn_clear_tts = gr.Button(value="Clear TTS")
btn_clear_tts.click(clear, inputs=[], outputs=[audio_tts])
with gr.Row():
audio_learner_recording_stt = gr.Audio(
label="Learner Recording",
sources=["microphone", "upload"],
type="filepath",
show_download_button=True,
)
with gr.Column(scale=4, min_width=320):
transcripted_text = gr.Textbox(
lines=2, placeholder=None, label="Transcripted text", visible=False
)
letter_correctness = gr.Textbox(
lines=1,
placeholder=None,
label="Letters correctness",
visible=False,
)
with gr.Row():
with gr.Column(scale=3, min_width=100):
pronunciation_accuracy = gr.Number(label="Current pronunciation accuracy %")
with gr.Column(scale=2, min_width=100):
number_score_de = gr.Number(label="Score DE", value=0)
with gr.Column(scale=2, min_width=100):
number_score_en = gr.Number(label="Score EN", value=0)
recording_ipa = gr.Textbox(
lines=1, placeholder=None, label="Learner phonetic transcription"
)
ideal_ipa = gr.Textbox(
lines=1, placeholder=None, label="Ideal phonetic transcription"
)
res = gr.Textbox(lines=1, placeholder=None, label="RES", visible=False)
html_output = gr.HTML(
label="Speech accuracy output",
elem_id="speech-output",
show_label=True,
visible=True,
render=True,
value=" - ",
elem_classes="speech-output",
)
with gr.Row():
btn = gr.Button(value="Recognize speech accuracy")
with gr.Accordion("Click here to expand the table examples", open=False):
examples_text = gr.Examples(
examples=[
["Hallo, wie geht es dir?", "de", 1],
["Hi there, how are you?", "en", 1],
["Die König-Ludwig-Eiche ist ein Naturdenkmal im Staatsbad Brückenau.", "de", 2,],
["Rome is home to some of the most beautiful monuments in the world.", "en", 2],
["Die König-Ludwig-Eiche ist ein Naturdenkmal im Staatsbad Brückenau, einem Ortsteil des drei Kilometer nordöstlich gelegenen Bad Brückenau im Landkreis Bad Kissingen in Bayern.", "de", 3],
["Some machine learning models are designed to understand and generate human-like text based on the input they receive.", "en", 3],
],
inputs=[learner_transcription, language, difficulty],
)
def get_updated_score_by_language(text: str, audio_rec: str | Path, lang: str, score_de: float, score_en: float):
_transcripted_text, _letter_correctness, _pronunciation_accuracy, _recording_ipa, _ideal_ipa, _res = lambdaSpeechToScore.get_speech_to_score_tuple(text, audio_rec, lang)
output = {
transcripted_text: _transcripted_text,
letter_correctness: _letter_correctness,
pronunciation_accuracy: _pronunciation_accuracy,
recording_ipa: _recording_ipa,
ideal_ipa: _ideal_ipa,
res: _res,
}
match lang:
case "de":
return {
number_score_de: float(score_de) + float(_pronunciation_accuracy),
number_score_en: float(score_en),
**output
}
case "en":
return {
number_score_en: float(score_en) + float(_pronunciation_accuracy),
number_score_de: float(score_de),
**output
}
case _:
raise NotImplementedError(f"Language {lang} not supported")
btn.click(
get_updated_score_by_language,
inputs=[learner_transcription, audio_learner_recording_stt, language, number_score_de, number_score_en],
outputs=[
transcripted_text,
letter_correctness,
pronunciation_accuracy,
recording_ipa,
ideal_ipa,
res,
number_score_de, number_score_en
],
)
btn_run_tts.click(
fn=lambdaTTS.get_tts,
inputs=[learner_transcription, language],
outputs=audio_tts,
)
btn_random_phrase.click(
lambdaGetSample.get_random_selection,
inputs=[language, difficulty],
outputs=[learner_transcription],
)
btn_random_phrase.click(
clear2,
inputs=[],
outputs=[audio_learner_recording_stt, audio_tts]
)
html_output.change(
None,
inputs=[transcripted_text, letter_correctness],
outputs=[html_output],
js=js.js_update_ipa_output,
)
if __name__ == "__main__":
gradio_app.launch()