Spaces:
Running
Running
from pathlib import Path | |
import gradio as gr | |
from aip_trainer import PROJECT_ROOT_FOLDER, app_logger, sample_rate_start | |
from aip_trainer.lambdas import js, lambdaGetSample, lambdaSpeechToScore, lambdaTTS | |
css = """ | |
.speech-output-label p {color: grey; margin-bottom: white;} | |
.background-white {background-color: white !important; } | |
.speech-output-group {padding: 12px;} | |
.speech-output-container {min-height: 60px;} | |
.speech-output-html {text-align: left; } | |
""" | |
word_idx_text = "Current word index" | |
def get_textbox_hidden(text = None): | |
if text: | |
return gr.Number(value=text, visible=False) | |
return gr.Textbox(visible=False) | |
def get_number_hidden(x: int = None): | |
if x: | |
return gr.Number(value=x, visible=False) | |
return gr.Number(visible=False) | |
def clear(): | |
return None | |
def clear2(): | |
return None, None | |
with gr.Blocks(css=css, head=js.head_driver_tour) as gradio_app: | |
local_storage = gr.BrowserState([0.0, 0.0]) | |
app_logger.info("start gradio app building...") | |
project_root_folder = Path(PROJECT_ROOT_FOLDER) | |
with open(project_root_folder / "aip_trainer" / "lambdas" / "app_description.md", "r", encoding="utf-8") as app_description_src: | |
md_app_description = app_description_src.read() | |
gr.Markdown(md_app_description.format(sample_rate_start=sample_rate_start)) | |
with gr.Row(): | |
with gr.Column(scale=4, min_width=300): | |
with gr.Row(elem_id="id-choose-random-phrase-by-language-and-difficulty"): | |
with gr.Column(scale=2, min_width=80): | |
radio_language = gr.Radio(["de", "en"], label="Language", value="en", elem_id="radio-language-id-element") | |
with gr.Column(scale=5, min_width=160): | |
radio_difficulty = gr.Radio( | |
label="Difficulty", | |
value=0, | |
choices=[ | |
("random", 0), | |
("easy", 1), | |
("medium", 2), | |
("hard", 3), | |
], | |
elem_id="radio-difficulty-id-element", | |
) | |
with gr.Column(scale=1, min_width=100): | |
btn_random_phrase = gr.Button(value="Choose a random phrase", elem_id="btn-random-phrase-id-element") | |
with gr.Row(): | |
with gr.Column(scale=7, min_width=300): | |
text_student_transcription = gr.Textbox( | |
lines=3, | |
label="Phrase to read for speech recognition", | |
value="Hi there, how are you?", | |
elem_id="text-student-transcription-id-element", | |
) | |
with gr.Row(): | |
audio_tts = gr.Audio(label="Audio TTS", elem_id="audio-tts-id-element") | |
with gr.Row(): | |
btn_run_tts = gr.Button(value="TTS in browser", elem_id="btn-run-tts-id-element") | |
btn_run_tts_backend = gr.Button(value="TTS backend", elem_id="btn-run-tts-backend-id-element") | |
btn_clear_tts = gr.Button(value="Clear TTS backend", elem_id="btn-clear-tts-backend-id-element") | |
btn_clear_tts.click(clear, inputs=[], outputs=[audio_tts]) | |
with gr.Row(): | |
audio_student_recording_stt = gr.Audio( | |
label="Record a speech to evaluate", | |
sources=["microphone", "upload"], | |
type="filepath", | |
show_download_button=True, | |
elem_id="audio-student-recording-stt-id-element", | |
) | |
with gr.Row(): | |
num_audio_duration_hidden = gr.Number(label="num_first_audio_duration", value=0, interactive=False, visible=False) | |
with gr.Accordion("Click here to expand the table examples", open=False, elem_id="accordion-examples-id-element"): | |
examples_text = gr.Examples( | |
examples=[ | |
["Hallo, wie geht es dir?", "de", 1], | |
["Hi there, how are you?", "en", 1], | |
["Die König-Ludwig-Eiche ist ein Naturdenkmal im Staatsbad Brückenau.", "de", 2,], | |
["Rome is home to some of the most beautiful monuments in the world.", "en", 2], | |
["Die König-Ludwig-Eiche ist ein Naturdenkmal im Staatsbad Brückenau, einem Ortsteil des drei Kilometer nordöstlich gelegenen Bad Brückenau im Landkreis Bad Kissingen in Bayern.", "de", 3], | |
["Some machine learning models are designed to understand and generate human-like text based on the input they receive.", "en", 3], | |
], | |
inputs=[text_student_transcription, radio_language, radio_difficulty], | |
elem_id="examples-text-id-element", | |
) | |
with gr.Column(scale=4, min_width=320): | |
text_transcribed_hidden = gr.Textbox( | |
placeholder=None, label="Transcribed text", visible=False | |
) | |
text_letter_correctness = gr.Textbox( | |
placeholder=None, | |
label="Letters correctness", | |
visible=False, | |
) | |
text_recording_ipa = gr.Textbox( | |
placeholder=None, label="Student phonetic transcription", elem_id="text-student-recording-ipa-id-element" | |
) | |
text_ideal_ipa = gr.Textbox( | |
placeholder=None, label="Ideal phonetic transcription", elem_id="text-ideal-ipa-id-element" | |
) | |
text_raw_json_output_hidden = gr.Textbox(placeholder=None, label="text_raw_json_output_hidden", visible=False) | |
with gr.Group(elem_classes="speech-output-group background-white"): | |
gr.Markdown("Speech accuracy output", elem_classes="speech-output-label background-white") | |
with gr.Group(elem_classes="speech-output-container background-white"): | |
html_output = gr.HTML( | |
label="Speech accuracy output", | |
elem_id="speech-output", | |
show_label=False, | |
visible=True, | |
render=True, | |
value=" - ", | |
elem_classes="speech-output-html background-white", | |
) | |
with gr.Row(): | |
with gr.Column(min_width=100, elem_classes="speech-accuracy-score-container row2 col1"): | |
num_pronunciation_accuracy = gr.Number(label="Current score %", elem_id="number-pronunciation-accuracy-id-element") | |
with gr.Column(min_width=100, elem_classes="speech-accuracy-score-container row2 col2"): | |
num_score_de = gr.Number(label="Global score DE %", value=0, interactive=False, elem_id="number-score-de-id-element") | |
with gr.Column(min_width=100, elem_classes="speech-accuracy-score-container row2 col3"): | |
num_score_en = gr.Number(label="Global score EN %", value=0, interactive=False, elem_id="number-score-en-id-element") | |
btn_recognize_speech_accuracy = gr.Button(value="Get speech accuracy score (%)", elem_id="btn-recognize-speech-accuracy-id-element") | |
with gr.Row(elem_id="id-replay-splitted-audio-by-words"): | |
num_tot_recognized_words = gr.Number(label="Total recognized words", visible=False, minimum=0, interactive=False) | |
with gr.Column(scale=1, min_width=50): | |
num_selected_recognized_word = gr.Number(label=word_idx_text, visible=True, minimum=0, value=0, interactive=False) | |
with gr.Column(scale=4, min_width=100): | |
audio_splitted_student_recording_stt = gr.Audio( | |
label="Splitted student speech output", | |
type="filepath", | |
show_download_button=True, | |
elem_id="audio-splitted-student-recording-stt-id-element", | |
) | |
text_selected_recognized_word_hidden = gr.Textbox(label="text_selected_recognized_word", value="placeholder", interactive=False, visible=False) | |
def get_updated_score_by_language(text: str, audio_rec: str | Path, lang: str, score_de: float, score_en: float): | |
import json | |
_transcribed_text, _letter_correctness, _pronunciation_accuracy, _recording_ipa, _ideal_ipa, _num_tot_recognized_word, first_audio_file, _res = lambdaSpeechToScore.get_speech_to_score_tuple(text, audio_rec, lang, remove_random_file=False) | |
new_num_selected_recognized_word = gr.Number(label=word_idx_text, visible=True, value=0) | |
words_list = _transcribed_text.split() | |
first_word = words_list[0] | |
json_res_loaded = json.loads(_res) | |
audio_durations = json_res_loaded["audio_durations"] | |
first_audio_duration = audio_durations[0] | |
output = { | |
text_transcribed_hidden: _transcribed_text, | |
text_letter_correctness: _letter_correctness, | |
num_pronunciation_accuracy: _pronunciation_accuracy, | |
text_recording_ipa: _recording_ipa, | |
text_ideal_ipa: _ideal_ipa, | |
text_raw_json_output_hidden: _res, | |
num_tot_recognized_words: _num_tot_recognized_word, | |
num_selected_recognized_word: new_num_selected_recognized_word, | |
audio_splitted_student_recording_stt: first_audio_file, | |
text_selected_recognized_word_hidden: first_word, | |
num_audio_duration_hidden: first_audio_duration | |
} | |
match lang: | |
case "de": | |
return { | |
num_score_de: float(score_de) + float(_pronunciation_accuracy), | |
num_score_en: float(score_en), | |
**output | |
} | |
case "en": | |
return { | |
num_score_en: float(score_en) + float(_pronunciation_accuracy), | |
num_score_de: float(score_de), | |
**output | |
} | |
case _: | |
raise NotImplementedError(f"Language {lang} not supported") | |
btn_recognize_speech_accuracy.click( | |
get_updated_score_by_language, | |
inputs=[text_student_transcription, audio_student_recording_stt, radio_language, num_score_de, num_score_en], | |
outputs=[ | |
text_transcribed_hidden, | |
text_letter_correctness, | |
num_pronunciation_accuracy, | |
text_recording_ipa, | |
text_ideal_ipa, | |
text_raw_json_output_hidden, | |
num_score_de, | |
num_score_en, | |
num_tot_recognized_words, | |
num_selected_recognized_word, | |
audio_splitted_student_recording_stt, | |
text_selected_recognized_word_hidden, | |
num_audio_duration_hidden | |
], | |
) | |
def change_max_selected_words(n): | |
app_logger.info(f"change_max_selected_words: {n} ...") | |
num_max_selected_words = n -1 | |
app_logger.info(f"num_selected_recognized_words.maximum, pre: {num_selected_recognized_word.maximum} ...") | |
label = word_idx_text if n == 0 else f"{word_idx_text} (from 0 to {num_max_selected_words})" | |
interactive = n > 0 | |
app_logger.info(f"change_max_selected_words: {n}, is interactive? {interactive} ...") | |
new_num_selected_recognized_words = gr.Number(label=label, visible=True, value=0, minimum=0, maximum=num_max_selected_words, interactive=interactive) | |
app_logger.info(f"num_selected_recognized_words.maximum, post: {num_selected_recognized_word.maximum} ...") | |
return new_num_selected_recognized_words | |
num_tot_recognized_words.change( | |
fn=change_max_selected_words, | |
inputs=[num_tot_recognized_words], | |
outputs=[num_selected_recognized_word], | |
) | |
def clear3(): | |
return None, None, None, None, None, None, 0, 0, 0 | |
text_student_transcription.change( | |
clear3, | |
inputs=[], | |
outputs=[ | |
audio_student_recording_stt, audio_tts, audio_splitted_student_recording_stt, text_recording_ipa, text_ideal_ipa, text_transcribed_hidden, | |
num_pronunciation_accuracy, num_selected_recognized_word, num_pronunciation_accuracy | |
], | |
) | |
def reset_max_total_recognized_words(content_text_recording_ipa, content_num_tot_recognized_words): | |
if content_text_recording_ipa is None or content_text_recording_ipa == "": | |
app_logger.info("reset_max_total_recognized_words...") | |
new_num_tot_recognized_words = gr.Number(label="Total recognized words", visible=False, value=0, minimum=0, interactive=False) | |
return new_num_tot_recognized_words | |
return content_num_tot_recognized_words | |
text_recording_ipa.change( | |
reset_max_total_recognized_words, | |
inputs=[text_recording_ipa, num_tot_recognized_words], | |
outputs=[ | |
num_tot_recognized_words | |
], | |
) | |
text_recording_ipa.change( | |
None, | |
inputs=[get_textbox_hidden(), get_textbox_hidden(), get_number_hidden()], | |
outputs=[html_output], | |
js=js.js_update_ipa_output, | |
) | |
btn_run_tts.click(fn=None, inputs=[text_student_transcription, radio_language], outputs=audio_tts, js=js.js_play_audio) | |
btn_run_tts_backend.click( | |
fn=lambdaTTS.get_tts, | |
inputs=[text_student_transcription, radio_language], | |
outputs=audio_tts, | |
) | |
btn_random_phrase.click( | |
fn=lambdaGetSample.get_random_selection, | |
inputs=[radio_language, radio_difficulty], | |
outputs=[text_student_transcription], | |
) | |
btn_random_phrase.click( | |
clear2, | |
inputs=[], | |
outputs=[audio_student_recording_stt, audio_tts] | |
) | |
html_output.change( | |
None, | |
inputs=[text_transcribed_hidden, text_letter_correctness, num_selected_recognized_word], | |
outputs=[html_output], | |
js=js.js_update_ipa_output, | |
) | |
num_selected_recognized_word.input( | |
fn=lambdaSpeechToScore.get_selected_word, | |
inputs=[num_selected_recognized_word, text_raw_json_output_hidden], | |
outputs=[audio_splitted_student_recording_stt, text_selected_recognized_word_hidden, num_audio_duration_hidden], | |
) | |
audio_splitted_student_recording_stt.play( | |
fn=None, | |
inputs=[text_selected_recognized_word_hidden, radio_language, num_audio_duration_hidden], | |
outputs=audio_splitted_student_recording_stt, | |
js=js.js_play_audio | |
) | |
def load_from_local_storage(saved_values): | |
print("loading from local storage", saved_values) | |
return saved_values[0], saved_values[1] | |
def save_to_local_storage(score_de, score_en): | |
return [score_de, score_en] | |
if __name__ == "__main__": | |
try: | |
gradio_app.launch() | |
except Exception as e: | |
app_logger.error(f"Error: {e}") | |
raise e | |