Spaces:
Running
Running
alessandro trinca tornidor
commited on
Commit
·
4cafb0a
1
Parent(s):
8e595ef
test: refactor structure tests suite, add more test cases for pronunciationTrainer module
Browse files
tests/lambdas/__init__.py
ADDED
File without changes
|
tests/models/__init__.py
ADDED
File without changes
|
tests/models/test_rulebasedmodels.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import unittest
|
2 |
+
|
3 |
+
import epitran
|
4 |
+
|
5 |
+
from aip_trainer.models import RuleBasedModels
|
6 |
+
|
7 |
+
|
8 |
+
words_real = 'Ich habe sehr viel glück, am leben und gesund zu sein'
|
9 |
+
words_transcribed = 'Ic hab zeh viel guck am und gesund tu sein'
|
10 |
+
|
11 |
+
|
12 |
+
class TestPhonemConverter(unittest.TestCase):
|
13 |
+
|
14 |
+
def test_english_ok(self):
|
15 |
+
phonem_converter = RuleBasedModels.EngPhonemConverter()
|
16 |
+
output = phonem_converter.convertToPhonem('Hello, this is a test')
|
17 |
+
self.assertEqual(output, 'hɛˈloʊ, ðɪs ɪz ə tɛst')
|
18 |
+
|
19 |
+
def test_german_ok(self):
|
20 |
+
deu_latn = epitran.Epitran('deu-Latn')
|
21 |
+
phonem_converter = RuleBasedModels.EpitranPhonemConverter(deu_latn)
|
22 |
+
output = phonem_converter.convertToPhonem('Hallo, das ist ein Test')
|
23 |
+
self.assertEqual(output, 'haloː, daːs ɪst aɪ̯n tɛst')
|
24 |
+
|
25 |
+
|
26 |
+
if __name__ == '__main__':
|
27 |
+
unittest.main()
|
tests/test_pronunciationtrainer.py
ADDED
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import unittest
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from torchaudio.transforms import Resample
|
6 |
+
|
7 |
+
from aip_trainer import pronunciationTrainer, sample_rate_start
|
8 |
+
from aip_trainer.lambdas.lambdaSpeechToScore import soundfile_load
|
9 |
+
from aip_trainer.utils import utilities
|
10 |
+
from tests import EVENTS_FOLDER
|
11 |
+
from tests.lambdas.test_lambdaSpeechToScore import set_seed
|
12 |
+
|
13 |
+
|
14 |
+
phrases = {
|
15 |
+
"de": {
|
16 |
+
"real": "Hallo, wie geht es dir?",
|
17 |
+
"transcribed": 'hallo wie geht es dir',
|
18 |
+
"partial": 'hallo wie geht ',
|
19 |
+
"incorrect": 'hail wi git es dir'
|
20 |
+
},
|
21 |
+
"en": {
|
22 |
+
"real": "Hi there, how are you?",
|
23 |
+
"transcribed": 'i there how are you',
|
24 |
+
"partial": 'i there how',
|
25 |
+
"incorrect": "I here how re youth"
|
26 |
+
}
|
27 |
+
}
|
28 |
+
trainer_SST_lambda_de = pronunciationTrainer.getTrainer("de")
|
29 |
+
trainer_SST_lambda_en = pronunciationTrainer.getTrainer("en")
|
30 |
+
signal_de, samplerate = soundfile_load(str(EVENTS_FOLDER / "test_de_easy.wav"))
|
31 |
+
signal_en, samplerate = soundfile_load(str(EVENTS_FOLDER / "test_en_easy.wav"))
|
32 |
+
transform = Resample(orig_freq=sample_rate_start, new_freq=16000)
|
33 |
+
|
34 |
+
|
35 |
+
class TestScore(unittest.TestCase):
|
36 |
+
def test_getTrainer(self):
|
37 |
+
self.assertIsInstance(trainer_SST_lambda_de, pronunciationTrainer.PronunciationTrainer)
|
38 |
+
self.assertIsInstance(trainer_SST_lambda_en, pronunciationTrainer.PronunciationTrainer)
|
39 |
+
|
40 |
+
def test_exact_transcription_de(self):
|
41 |
+
set_seed()
|
42 |
+
phrase_real = phrases["de"]["real"]
|
43 |
+
real_and_transcribed_words, _, _ = trainer_SST_lambda_de.matchSampleAndRecordedWords(phrase_real, phrase_real)
|
44 |
+
pronunciation_accuracy, _ = trainer_SST_lambda_de.getPronunciationAccuracy(real_and_transcribed_words)
|
45 |
+
self.assertEqual(int(pronunciation_accuracy), 100)
|
46 |
+
|
47 |
+
def test_transcription_de(self):
|
48 |
+
set_seed()
|
49 |
+
phrase_real = phrases["de"]["real"]
|
50 |
+
phrase_transcribed = phrases["de"]["transcribed"]
|
51 |
+
real_and_transcribed_words, _, _ = trainer_SST_lambda_de.matchSampleAndRecordedWords(phrase_real, phrase_transcribed)
|
52 |
+
pronunciation_accuracy, _ = trainer_SST_lambda_de.getPronunciationAccuracy(real_and_transcribed_words)
|
53 |
+
self.assertEqual(int(pronunciation_accuracy), 100)
|
54 |
+
|
55 |
+
def test_partial_transcription_de(self):
|
56 |
+
set_seed()
|
57 |
+
phrase_real = phrases["de"]["real"]
|
58 |
+
phrase_partial = phrases["de"]["partial"]
|
59 |
+
real_and_transcribed_words, _, _ = trainer_SST_lambda_de.matchSampleAndRecordedWords(phrase_real, phrase_partial)
|
60 |
+
pronunciation_accuracy, _ = trainer_SST_lambda_de.getPronunciationAccuracy(real_and_transcribed_words)
|
61 |
+
self.assertEqual(int(pronunciation_accuracy), 71)
|
62 |
+
|
63 |
+
def test_incorrect_transcription_with_correct_words_de(self):
|
64 |
+
set_seed()
|
65 |
+
phrase_real = phrases["de"]["real"]
|
66 |
+
phrase_transcribed_incorrect = phrases["de"]["incorrect"]
|
67 |
+
real_and_transcribed_words, _, _ = trainer_SST_lambda_de.matchSampleAndRecordedWords(phrase_real, phrase_transcribed_incorrect)
|
68 |
+
pronunciation_accuracy, _ = trainer_SST_lambda_de.getPronunciationAccuracy(real_and_transcribed_words)
|
69 |
+
self.assertEqual(int(pronunciation_accuracy), 71)
|
70 |
+
|
71 |
+
def test_exact_transcription_en(self):
|
72 |
+
set_seed()
|
73 |
+
phrase_real = phrases["en"]["real"]
|
74 |
+
real_and_transcribed_words, _, _ = trainer_SST_lambda_en.matchSampleAndRecordedWords(phrase_real, phrase_real)
|
75 |
+
pronunciation_accuracy, _ = trainer_SST_lambda_en.getPronunciationAccuracy(real_and_transcribed_words)
|
76 |
+
self.assertEqual(int(pronunciation_accuracy), 100)
|
77 |
+
|
78 |
+
def test_transcription_en(self):
|
79 |
+
set_seed()
|
80 |
+
phrase_real = phrases["en"]["real"]
|
81 |
+
phrase_transcribed = phrases["en"]["transcribed"]
|
82 |
+
real_and_transcribed_words, _, _ = trainer_SST_lambda_en.matchSampleAndRecordedWords(phrase_real, phrase_transcribed)
|
83 |
+
pronunciation_accuracy, _ = trainer_SST_lambda_en.getPronunciationAccuracy(real_and_transcribed_words)
|
84 |
+
self.assertEqual(int(pronunciation_accuracy), 94)
|
85 |
+
|
86 |
+
def test_partial_transcription_en(self):
|
87 |
+
set_seed()
|
88 |
+
phrase_real = phrases["en"]["real"]
|
89 |
+
phrase_partial = phrases["en"]["partial"]
|
90 |
+
real_and_transcribed_words, _, _ = trainer_SST_lambda_en.matchSampleAndRecordedWords(phrase_real, phrase_partial)
|
91 |
+
pronunciation_accuracy, _ = trainer_SST_lambda_en.getPronunciationAccuracy(real_and_transcribed_words)
|
92 |
+
self.assertEqual(int(pronunciation_accuracy), 56)
|
93 |
+
|
94 |
+
def test_incorrect_transcription_with_correct_words_en(self):
|
95 |
+
set_seed()
|
96 |
+
phrase_real = phrases["en"]["real"]
|
97 |
+
phrase_transcribed_incorrect = phrases["en"]["incorrect"]
|
98 |
+
real_and_transcribed_words, _, _ = trainer_SST_lambda_en.matchSampleAndRecordedWords(phrase_real, phrase_transcribed_incorrect)
|
99 |
+
pronunciation_accuracy, _ = trainer_SST_lambda_en.getPronunciationAccuracy(real_and_transcribed_words)
|
100 |
+
self.assertEqual(int(pronunciation_accuracy), 69)
|
101 |
+
|
102 |
+
def test_processAudioForGivenText_getTranscriptAndWordsLocations_de(self):
|
103 |
+
set_seed()
|
104 |
+
phrase_real = phrases["de"]["real"]
|
105 |
+
signal_de_shape = signal_de.shape[0]
|
106 |
+
signal_transformed = transform(torch.Tensor(signal_de)).unsqueeze(0)
|
107 |
+
result = trainer_SST_lambda_de.processAudioForGivenText(signal_transformed, phrase_real)
|
108 |
+
expected_result = {
|
109 |
+
'recording_transcript': 'hallo wie geht es dir',
|
110 |
+
'real_and_transcribed_words': [('Hallo,', 'hallo'), ('wie', 'wie'), ('geht', 'geht'), ('es', 'es'), ('dir?', 'dir')],
|
111 |
+
'recording_ipa': 'haloː viː ɡeːt ɛːs diːɐ̯', 'start_time': '0.0 0.3733125 0.60425 0.7966875 0.989125', 'end_time': '0.4733125 0.70425 0.8966875 1.089125 1.3200625',
|
112 |
+
'real_and_transcribed_words_ipa': [('haloː,', 'haloː'), ('viː', 'viː'), ('ɡeːt', 'ɡeːt'), ('ɛːs', 'ɛːs'), ('diːr?', 'diːɐ̯')],
|
113 |
+
'pronunciation_accuracy': 100.0,
|
114 |
+
'pronunciation_categories': [0, 0, 0, 0, 0]
|
115 |
+
}
|
116 |
+
self.assertDictEqual(result, expected_result)
|
117 |
+
transcript, word_locations = trainer_SST_lambda_de.getTranscriptAndWordsLocations(signal_de_shape)
|
118 |
+
assert transcript == phrases["de"]["transcribed"]
|
119 |
+
assert word_locations == [(0, 7573), (5973, 11268), (9668, 14347), (12747, 17426), (15826, 21121)]
|
120 |
+
|
121 |
+
def test_processAudioForGivenText_de(self):
|
122 |
+
set_seed()
|
123 |
+
phrase_real = phrases["de"]["real"]
|
124 |
+
signal_transformed = transform(torch.Tensor(signal_de)).unsqueeze(0)
|
125 |
+
expected_result = {
|
126 |
+
'recording_transcript': 'hallo wie geht es dir',
|
127 |
+
'real_and_transcribed_words': [('Hallo,', 'hallo'), ('wie', 'wie'), ('geht', 'geht'), ('es', 'es'), ('dir?', 'dir')],
|
128 |
+
'recording_ipa': 'haloː viː ɡeːt ɛːs diːɐ̯', 'start_time': '0.0 0.3733125 0.60425 0.7966875 0.989125', 'end_time': '0.4733125 0.70425 0.8966875 1.089125 1.3200625',
|
129 |
+
'real_and_transcribed_words_ipa': [('haloː,', 'haloː'), ('viː', 'viː'), ('ɡeːt', 'ɡeːt'), ('ɛːs', 'ɛːs'), ('diːr?', 'diːɐ̯')],
|
130 |
+
'pronunciation_accuracy': 100.0,
|
131 |
+
'pronunciation_categories': [0, 0, 0, 0, 0],
|
132 |
+
"start_time": "0.0 0.3733125 0.60425 0.7966875 0.989125",
|
133 |
+
"end_time": "0.4733125 0.70425 0.8966875 1.089125 1.3200625",
|
134 |
+
}
|
135 |
+
result = trainer_SST_lambda_de.processAudioForGivenText(signal_transformed, phrase_real)
|
136 |
+
self.assertDictEqual(result, expected_result)
|
137 |
+
|
138 |
+
def test_removePunctuation_de(self):
|
139 |
+
word = "glück,"
|
140 |
+
cleaned_word = trainer_SST_lambda_de.removePunctuation(word)
|
141 |
+
self.assertEqual(cleaned_word, "glück")
|
142 |
+
word = "glück,\n\rhallo..."
|
143 |
+
cleaned_word = trainer_SST_lambda_de.removePunctuation(word)
|
144 |
+
self.assertEqual(cleaned_word, "glück\n\rhallo")
|
145 |
+
|
146 |
+
def test_getWordsPronunciationCategory_de(self):
|
147 |
+
accuracies = [x for x in range(-121, 121, 10)] + [np.inf, -np.inf, np.nan, 1.5, -1.5]
|
148 |
+
expected_categories = [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2]
|
149 |
+
categories = trainer_SST_lambda_de.getWordsPronunciationCategory(accuracies)
|
150 |
+
self.assertEqual(categories, expected_categories)
|
151 |
+
|
152 |
+
def test_preprocessAudio_de(self):
|
153 |
+
output_hash = utilities.hash_calculate(signal_de, is_file=False)
|
154 |
+
assert output_hash == b'D9pMFzYL1BSPPg89ZCQE61xzb7QICXolYtC9EJRpvS0='
|
155 |
+
signal_transformed = transform(torch.Tensor(signal_de)).unsqueeze(0)
|
156 |
+
processed_audio = trainer_SST_lambda_de.preprocessAudio(signal_transformed)
|
157 |
+
self.assertIsInstance(processed_audio, torch.Tensor)
|
158 |
+
self.assertEqual(processed_audio.shape, (1, 23400))
|
159 |
+
output_hash = utilities.hash_calculate(processed_audio.numpy(), is_file=False)
|
160 |
+
assert output_hash == b'Ri/1rmgYmRSWaAw/Y3PoLEu1woiczhSUdUCbaMf++EM='
|
161 |
+
|
162 |
+
def test_processAudioForGivenText_getTranscriptAndWordsLocations_en(self):
|
163 |
+
set_seed()
|
164 |
+
phrase_real = phrases["en"]["real"]
|
165 |
+
signal_en_shape = signal_en.shape[0]
|
166 |
+
signal_transformed = transform(torch.Tensor(signal_en)).unsqueeze(0)
|
167 |
+
result = trainer_SST_lambda_en.processAudioForGivenText(signal_transformed, phrase_real)
|
168 |
+
expected_result = {
|
169 |
+
'recording_transcript': 'i there how are you',
|
170 |
+
'real_and_transcribed_words': [('Hi', 'i'), ('there,', 'there'), ('how', 'how'), ('are', 'are'), ('you?', 'you')],
|
171 |
+
'recording_ipa': 'aɪ ðɛr haʊ ər ju', 'start_time': '0.0 0.0625 0.2875 0.475 0.7', 'end_time': '0.1625 0.3875 0.575 0.8 0.9875',
|
172 |
+
'real_and_transcribed_words_ipa': [('haɪ', 'aɪ'), ('ðɛr,', 'ðɛr'), ('haʊ', 'haʊ'), ('ər', 'ər'), ('ju?', 'ju')],
|
173 |
+
'pronunciation_accuracy': 94.0, 'pronunciation_categories': [2, 0, 0, 0, 0]
|
174 |
+
}
|
175 |
+
self.assertDictEqual(result, expected_result)
|
176 |
+
transcript, word_locations = trainer_SST_lambda_en.getTranscriptAndWordsLocations(signal_en_shape)
|
177 |
+
assert transcript == phrases["en"]["transcribed"]
|
178 |
+
assert word_locations == [(0, 2600), (1000, 6200), (4600, 9200), (7600, 12800), (11200, 15800)]
|
179 |
+
|
180 |
+
def test_processAudioForGivenText_en(self):
|
181 |
+
set_seed()
|
182 |
+
phrase_real = phrases["en"]["real"]
|
183 |
+
signal_transformed = transform(torch.Tensor(signal_en)).unsqueeze(0)
|
184 |
+
expected_result = {
|
185 |
+
'recording_transcript': 'i there how are you',
|
186 |
+
'real_and_transcribed_words': [('Hi', 'i'), ('there,', 'there'), ('how', 'how'), ('are', 'are'), ('you?', 'you')],
|
187 |
+
'recording_ipa': 'aɪ ðɛr haʊ ər ju', 'start_time': '0.0 0.0625 0.2875 0.475 0.7', 'end_time': '0.1625 0.3875 0.575 0.8 0.9875',
|
188 |
+
'real_and_transcribed_words_ipa': [('haɪ', 'aɪ'), ('ðɛr,', 'ðɛr'), ('haʊ', 'haʊ'), ('ər', 'ər'), ('ju?', 'ju')],
|
189 |
+
'pronunciation_accuracy': 94.0, 'pronunciation_categories': [2, 0, 0, 0, 0],
|
190 |
+
'start_time': '0.0 0.0625 0.2875 0.475 0.7',
|
191 |
+
'end_time': '0.1625 0.3875 0.575 0.8 0.9875'
|
192 |
+
}
|
193 |
+
result = trainer_SST_lambda_en.processAudioForGivenText(signal_transformed, phrase_real)
|
194 |
+
self.assertDictEqual(result, expected_result)
|
195 |
+
|
196 |
+
def test_getPronunciationCategoryFromAccuracy_en(self):
|
197 |
+
accuracies = [x for x in range(-121, 121, 10)] + [np.inf, -np.inf, np.nan, 1.5, -1.5]
|
198 |
+
expected_categories = [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2]
|
199 |
+
all_categories = []
|
200 |
+
for accuracy in accuracies:
|
201 |
+
category = trainer_SST_lambda_en.getPronunciationCategoryFromAccuracy(accuracy)
|
202 |
+
all_categories.append(category)
|
203 |
+
self.assertEqual(all_categories, expected_categories)
|
204 |
+
|
205 |
+
|
206 |
+
if __name__ == '__main__':
|
207 |
+
unittest.main()
|
tests/{test_phonem_converter_score.py → test_wordmetrics.py}
RENAMED
@@ -1,53 +1,13 @@
|
|
1 |
import unittest
|
2 |
|
3 |
-
import
|
4 |
-
|
5 |
-
from aip_trainer import pronunciationTrainer, WordMetrics
|
6 |
-
from aip_trainer.models import RuleBasedModels
|
7 |
|
8 |
|
9 |
words_real = 'Ich habe sehr viel glück, am leben und gesund zu sein'
|
10 |
words_transcribed = 'Ic hab zeh viel guck am und gesund tu sein'
|
11 |
|
12 |
|
13 |
-
class
|
14 |
-
|
15 |
-
def test_english_ok(self):
|
16 |
-
phonem_converter = RuleBasedModels.EngPhonemConverter()
|
17 |
-
output = phonem_converter.convertToPhonem('Hello, this is a test')
|
18 |
-
self.assertEqual(output, 'hɛˈloʊ, ðɪs ɪz ə tɛst')
|
19 |
-
|
20 |
-
def test_german_ok(self):
|
21 |
-
deu_latn = epitran.Epitran('deu-Latn')
|
22 |
-
phonem_converter = RuleBasedModels.EpitranPhonemConverter(deu_latn)
|
23 |
-
output = phonem_converter.convertToPhonem('Hallo, das ist ein Test')
|
24 |
-
self.assertEqual(output, 'haloː, daːs ɪst aɪ̯n tɛst')
|
25 |
-
|
26 |
-
|
27 |
-
trainer_SST_lambda = {'de': pronunciationTrainer.getTrainer("de")}
|
28 |
-
|
29 |
-
|
30 |
-
class TestScore(unittest.TestCase):
|
31 |
-
|
32 |
-
def test_exact_transcription(self):
|
33 |
-
real_and_transcribed_words, _, _ = trainer_SST_lambda['de'].matchSampleAndRecordedWords(
|
34 |
-
words_real, words_real)
|
35 |
-
|
36 |
-
pronunciation_accuracy, _ = trainer_SST_lambda['de'].getPronunciationAccuracy(
|
37 |
-
real_and_transcribed_words)
|
38 |
-
|
39 |
-
self.assertEqual(int(pronunciation_accuracy), 100)
|
40 |
-
|
41 |
-
def test_incorrect_transcription(self):
|
42 |
-
|
43 |
-
real_and_transcribed_words, _, _ = trainer_SST_lambda['de'].matchSampleAndRecordedWords(
|
44 |
-
words_real, words_transcribed)
|
45 |
-
|
46 |
-
pronunciation_accuracy, _ = trainer_SST_lambda['de'].getPronunciationAccuracy(
|
47 |
-
real_and_transcribed_words)
|
48 |
-
|
49 |
-
self.assertEqual(int(pronunciation_accuracy), 71)
|
50 |
-
|
51 |
def test_edit_distance_python(self):
|
52 |
output = WordMetrics.edit_distance_python(words_real, words_transcribed)
|
53 |
self.assertEqual(output, int(14))
|
|
|
1 |
import unittest
|
2 |
|
3 |
+
from aip_trainer import WordMetrics
|
|
|
|
|
|
|
4 |
|
5 |
|
6 |
words_real = 'Ich habe sehr viel glück, am leben und gesund zu sein'
|
7 |
words_transcribed = 'Ic hab zeh viel guck am und gesund tu sein'
|
8 |
|
9 |
|
10 |
+
class TestWordMetrics(unittest.TestCase):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
def test_edit_distance_python(self):
|
12 |
output = WordMetrics.edit_distance_python(words_real, words_transcribed)
|
13 |
self.assertEqual(output, int(14))
|
tests/utils/__init__.py
ADDED
File without changes
|