Spaces:
Running
Running
alessandro trinca tornidor
commited on
Commit
·
9ab32d7
1
Parent(s):
d804881
ci: hugginface space, move from docker to gradio sdk v5.6.0, add missing packages.txt with ffmpeg, pre-requirements.txt with pip, update gradio app to properly format informations to frontend, update tests
Browse files- README.md +5 -2
- aip_trainer/lambdas/lambdaSpeechToScore.py +17 -6
- aip_trainer/lambdas/routes.py +0 -16
- aip_trainer/models/models.py +60 -0
- app.py +103 -118
- packages.txt +1 -0
- pre-requirements.txt +1 -0
- requirements-flask.txt +21 -0
- requirements.txt +1 -3
- tests/test_GetAccuracyFromRecordedAudio.py +4 -4
README.md
CHANGED
@@ -3,7 +3,9 @@ title: AI Pronunciation Trainer
|
|
3 |
emoji: 🎤
|
4 |
colorFrom: red
|
5 |
colorTo: blue
|
6 |
-
sdk:
|
|
|
|
|
7 |
pinned: false
|
8 |
license: mit
|
9 |
---
|
@@ -59,7 +61,8 @@ pnpm playwright test
|
|
59 |
|
60 |
- add an updated online version on HuggingFace, Cloudflare or AWS
|
61 |
- move from pytorch to onnxruntime (if possible)
|
62 |
-
- refactor frontend with something more modern (e.g. vuejs)
|
|
|
63 |
- refactor css style with tailwindcss
|
64 |
- add more e2e tests with playwright
|
65 |
|
|
|
3 |
emoji: 🎤
|
4 |
colorFrom: red
|
5 |
colorTo: blue
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 5.6.0
|
8 |
+
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
---
|
|
|
61 |
|
62 |
- add an updated online version on HuggingFace, Cloudflare or AWS
|
63 |
- move from pytorch to onnxruntime (if possible)
|
64 |
+
- refactor frontend with something more modern (e.g. vuejs, gradio)
|
65 |
+
- improve documentation, backend tests
|
66 |
- refactor css style with tailwindcss
|
67 |
- add more e2e tests with playwright
|
68 |
|
aip_trainer/lambdas/lambdaSpeechToScore.py
CHANGED
@@ -43,12 +43,13 @@ def lambda_handler(event, context):
|
|
43 |
},
|
44 |
'body': ''
|
45 |
}
|
46 |
-
output =
|
|
|
47 |
app_logger.debug(f"output: {output} ...")
|
48 |
return output
|
49 |
|
50 |
|
51 |
-
def
|
52 |
app_logger.info(f"real_text:{real_text} ...")
|
53 |
app_logger.debug(f"file_bytes:{file_bytes_or_audiotmpfile} ...")
|
54 |
app_logger.info(f"language:{language} ...")
|
@@ -118,10 +119,12 @@ def get_speech_to_score(real_text: str, file_bytes_or_audiotmpfile: str | dict,
|
|
118 |
duration = time.time() - start
|
119 |
duration_tot = time.time() - start0
|
120 |
app_logger.info(f'Time to post-process results: {duration}, tot_duration:{duration_tot}.')
|
|
|
|
|
121 |
|
122 |
-
|
123 |
-
'ipa_transcript':
|
124 |
-
'pronunciation_accuracy':
|
125 |
'real_transcripts': real_transcripts, 'matched_transcripts': matched_transcripts,
|
126 |
'real_transcripts_ipa': real_transcripts_ipa, 'matched_transcripts_ipa': matched_transcripts_ipa,
|
127 |
'pair_accuracy_category': pair_accuracy_category,
|
@@ -129,7 +132,15 @@ def get_speech_to_score(real_text: str, file_bytes_or_audiotmpfile: str | dict,
|
|
129 |
'end_time': result['end_time'],
|
130 |
'is_letter_correct_all_words': is_letter_correct_all_words}
|
131 |
|
132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
|
135 |
# From Librosa
|
|
|
43 |
},
|
44 |
'body': ''
|
45 |
}
|
46 |
+
output = get_speech_to_score_dict(real_text=real_text, file_bytes_or_audiotmpfile=file_bytes_or_audiotmpfile, language=language, remove_random_file=False)
|
47 |
+
output = json.dumps(output)
|
48 |
app_logger.debug(f"output: {output} ...")
|
49 |
return output
|
50 |
|
51 |
|
52 |
+
def get_speech_to_score_dict(real_text: str, file_bytes_or_audiotmpfile: str | dict, language: str = "en", remove_random_file: bool = True):
|
53 |
app_logger.info(f"real_text:{real_text} ...")
|
54 |
app_logger.debug(f"file_bytes:{file_bytes_or_audiotmpfile} ...")
|
55 |
app_logger.info(f"language:{language} ...")
|
|
|
119 |
duration = time.time() - start
|
120 |
duration_tot = time.time() - start0
|
121 |
app_logger.info(f'Time to post-process results: {duration}, tot_duration:{duration_tot}.')
|
122 |
+
pronunciation_accuracy = str(int(result['pronunciation_accuracy']))
|
123 |
+
ipa_transcript = result['recording_ipa']
|
124 |
|
125 |
+
return {'real_transcript': result['recording_transcript'],
|
126 |
+
'ipa_transcript': ipa_transcript,
|
127 |
+
'pronunciation_accuracy': pronunciation_accuracy,
|
128 |
'real_transcripts': real_transcripts, 'matched_transcripts': matched_transcripts,
|
129 |
'real_transcripts_ipa': real_transcripts_ipa, 'matched_transcripts_ipa': matched_transcripts_ipa,
|
130 |
'pair_accuracy_category': pair_accuracy_category,
|
|
|
132 |
'end_time': result['end_time'],
|
133 |
'is_letter_correct_all_words': is_letter_correct_all_words}
|
134 |
|
135 |
+
|
136 |
+
def get_speech_to_score_tuple(real_text: str, file_bytes_or_audiotmpfile: str | dict, language: str = "en", remove_random_file: bool = True):
|
137 |
+
output = get_speech_to_score_dict(real_text=real_text, file_bytes_or_audiotmpfile=file_bytes_or_audiotmpfile, language=language, remove_random_file=remove_random_file)
|
138 |
+
real_transcripts = output['real_transcripts']
|
139 |
+
is_letter_correct_all_words = output['is_letter_correct_all_words']
|
140 |
+
pronunciation_accuracy = output['pronunciation_accuracy']
|
141 |
+
ipa_transcript = output['ipa_transcript']
|
142 |
+
real_transcripts_ipa = output['real_transcripts_ipa']
|
143 |
+
return real_transcripts, is_letter_correct_all_words, pronunciation_accuracy, ipa_transcript, real_transcripts_ipa, json.dumps(output)
|
144 |
|
145 |
|
146 |
# From Librosa
|
aip_trainer/lambdas/routes.py
DELETED
@@ -1,16 +0,0 @@
|
|
1 |
-
import random
|
2 |
-
|
3 |
-
import structlog
|
4 |
-
from fastapi import APIRouter
|
5 |
-
|
6 |
-
|
7 |
-
custom_structlog_logger = structlog.stdlib.get_logger(__name__)
|
8 |
-
router = APIRouter()
|
9 |
-
|
10 |
-
|
11 |
-
@router.get("/health")
|
12 |
-
def health():
|
13 |
-
import torch
|
14 |
-
import torchaudio
|
15 |
-
custom_structlog_logger.info(f"Still alive, torch version:{torch.__version__}, torchaudio:{torchaudio.__version__} ...")
|
16 |
-
return "Still alive!"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
aip_trainer/models/models.py
CHANGED
@@ -8,6 +8,66 @@ from silero.utils import Decoder
|
|
8 |
from aip_trainer import app_logger
|
9 |
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
def silero_stt(
|
12 |
language="en",
|
13 |
version="latest",
|
|
|
8 |
from aip_trainer import app_logger
|
9 |
|
10 |
|
11 |
+
def silero_tts(language='en',
|
12 |
+
speaker='kseniya_16khz',
|
13 |
+
**kwargs):
|
14 |
+
""" Silero Text-To-Speech Models
|
15 |
+
language (str): language of the model, now available are ['ru', 'en', 'de', 'es', 'fr']
|
16 |
+
Returns a model and a set of utils
|
17 |
+
Please see https://github.com/snakers4/silero-models for usage examples
|
18 |
+
"""
|
19 |
+
from omegaconf import OmegaConf
|
20 |
+
from silero.tts_utils import apply_tts
|
21 |
+
from silero.tts_utils import init_jit_model as init_jit_model_tts
|
22 |
+
|
23 |
+
models_list_file = os.path.join(os.path.dirname(__file__), "..", "..", "models.yml")
|
24 |
+
if not os.path.exists(models_list_file):
|
25 |
+
models_list_file = 'latest_silero_models.yml'
|
26 |
+
if not os.path.exists(models_list_file):
|
27 |
+
torch.hub.download_url_to_file('https://raw.githubusercontent.com/snakers4/silero-models/master/models.yml',
|
28 |
+
'latest_silero_models.yml',
|
29 |
+
progress=False)
|
30 |
+
assert os.path.exists(models_list_file)
|
31 |
+
models = OmegaConf.load(models_list_file)
|
32 |
+
available_languages = list(models.tts_models.keys())
|
33 |
+
assert language in available_languages, f'Language not in the supported list {available_languages}'
|
34 |
+
available_speakers = []
|
35 |
+
speaker_language = {}
|
36 |
+
for lang in available_languages:
|
37 |
+
speakers = list(models.tts_models.get(lang).keys())
|
38 |
+
available_speakers.extend(speakers)
|
39 |
+
for _ in speakers:
|
40 |
+
speaker_language[_] = lang
|
41 |
+
assert speaker in available_speakers, f'Speaker not in the supported list {available_speakers}'
|
42 |
+
assert language == speaker_language[speaker], f"Incorrect language '{language}' for this speaker, please specify '{speaker_language[speaker]}'"
|
43 |
+
|
44 |
+
model_conf = models.tts_models[language][speaker].latest
|
45 |
+
if '_v2' in speaker or '_v3' in speaker or 'v3_' in speaker or 'v4_' in speaker:
|
46 |
+
from torch import package
|
47 |
+
model_url = model_conf.package
|
48 |
+
model_dir = os.path.join(os.path.dirname(__file__), "model")
|
49 |
+
os.makedirs(model_dir, exist_ok=True)
|
50 |
+
model_path = os.path.join(model_dir, os.path.basename(model_url))
|
51 |
+
if not os.path.isfile(model_path):
|
52 |
+
torch.hub.download_url_to_file(model_url,
|
53 |
+
model_path,
|
54 |
+
progress=True)
|
55 |
+
imp = package.PackageImporter(model_path)
|
56 |
+
model = imp.load_pickle("tts_models", "model")
|
57 |
+
if speaker == 'multi_v2':
|
58 |
+
avail_speakers = model_conf.speakers
|
59 |
+
return model, avail_speakers
|
60 |
+
else:
|
61 |
+
example_text = model_conf.example
|
62 |
+
return model, example_text
|
63 |
+
else:
|
64 |
+
model = init_jit_model_tts(model_conf.jit)
|
65 |
+
symbols = model_conf.tokenset
|
66 |
+
example_text = model_conf.example
|
67 |
+
sample_rate = model_conf.sample_rate
|
68 |
+
return model, symbols, sample_rate, example_text, apply_tts
|
69 |
+
|
70 |
+
|
71 |
def silero_stt(
|
72 |
language="en",
|
73 |
version="latest",
|
app.py
CHANGED
@@ -1,127 +1,112 @@
|
|
1 |
-
import logging
|
2 |
-
import os
|
3 |
-
import time
|
4 |
-
|
5 |
import gradio as gr
|
6 |
-
import structlog
|
7 |
-
import uvicorn
|
8 |
-
from aip_trainer.lambdas import lambdaSpeechToScore
|
9 |
-
from asgi_correlation_id import CorrelationIdMiddleware
|
10 |
-
from asgi_correlation_id.context import correlation_id
|
11 |
-
from dotenv import load_dotenv
|
12 |
-
from fastapi import FastAPI, Request, Response
|
13 |
-
from uvicorn.protocols.utils import get_path_with_query_string
|
14 |
-
|
15 |
-
from aip_trainer.utils.session_logger import setup_logging
|
16 |
-
from aip_trainer.lambdas.routes import router
|
17 |
-
|
18 |
-
|
19 |
-
load_dotenv()
|
20 |
-
|
21 |
-
LOG_JSON_FORMAT = bool(os.getenv("LOG_JSON_FORMAT", False))
|
22 |
-
LOG_LEVEL = os.getenv("LOG_LEVEL", "INFO")
|
23 |
-
setup_logging(json_logs=LOG_JSON_FORMAT, log_level=LOG_LEVEL)
|
24 |
-
logger = structlog.stdlib.get_logger(__name__)
|
25 |
-
app = FastAPI(title="Example API", version="1.0.0")
|
26 |
-
|
27 |
-
|
28 |
-
@app.middleware("http")
|
29 |
-
async def logging_middleware(request: Request, call_next) -> Response:
|
30 |
-
structlog.contextvars.clear_contextvars()
|
31 |
-
# These context vars will be added to all log entries emitted during the request
|
32 |
-
request_id = correlation_id.get()
|
33 |
-
# print(f"request_id:{request_id}.")
|
34 |
-
structlog.contextvars.bind_contextvars(request_id=request_id)
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
# so we can add headers to it (process time, request ID...)
|
39 |
-
response = Response(status_code=500)
|
40 |
-
try:
|
41 |
-
response = await call_next(request)
|
42 |
-
except Exception:
|
43 |
-
# TODO: Validate that we don't swallow exceptions (unit test?)
|
44 |
-
structlog.stdlib.get_logger("api.error").exception("Uncaught exception")
|
45 |
-
raise
|
46 |
-
finally:
|
47 |
-
process_time = time.perf_counter_ns() - start_time
|
48 |
-
status_code = response.status_code
|
49 |
-
url = get_path_with_query_string(request.scope)
|
50 |
-
client_host = request.client.host
|
51 |
-
client_port = request.client.port
|
52 |
-
http_method = request.method
|
53 |
-
http_version = request.scope["http_version"]
|
54 |
-
# Recreate the Uvicorn access log format, but add all parameters as structured information
|
55 |
-
logger.info(
|
56 |
-
f"""{client_host}:{client_port} - "{http_method} {url} HTTP/{http_version}" {status_code}""",
|
57 |
-
http={
|
58 |
-
"url": str(request.url),
|
59 |
-
"status_code": status_code,
|
60 |
-
"method": http_method,
|
61 |
-
"request_id": request_id,
|
62 |
-
"version": http_version,
|
63 |
-
},
|
64 |
-
network={"client": {"ip": client_host, "port": client_port}},
|
65 |
-
duration=process_time,
|
66 |
-
)
|
67 |
-
response.headers["X-Process-Time"] = str(process_time / 10 ** 9)
|
68 |
-
return response
|
69 |
-
|
70 |
-
|
71 |
-
app.include_router(router)
|
72 |
-
logger.info("routes included, creating gradio app")
|
73 |
-
CUSTOM_GRADIO_PATH = "/"
|
74 |
-
|
75 |
-
|
76 |
-
def get_gradio_app():
|
77 |
-
with gr.Blocks() as gradio_app:
|
78 |
-
logger.info("start gradio app building...")
|
79 |
-
gr.Markdown(
|
80 |
-
"""
|
81 |
-
# Hello World!
|
82 |
|
83 |
-
Start typing below to _see_ the *output*.
|
84 |
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
)
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
)
|
101 |
-
|
102 |
-
|
103 |
-
""
|
104 |
-
|
105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
"""
|
107 |
-
|
108 |
-
lambdaSpeechToScore.get_speech_to_score,
|
109 |
-
inputs=[learner_transcription, learner_recording, language],
|
110 |
-
outputs=[text_output]
|
111 |
-
)
|
112 |
-
return gradio_app
|
113 |
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
|
122 |
if __name__ == "__main__":
|
123 |
-
|
124 |
-
uvicorn.run("app:app", host="127.0.0.1", port=7860, log_config=None, reload=True)
|
125 |
-
except Exception as ex:
|
126 |
-
logging.error(f"ex:{ex}.")
|
127 |
-
raise ex
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
from aip_trainer import app_logger
|
4 |
+
from aip_trainer.lambdas import lambdaSpeechToScore
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
|
|
6 |
|
7 |
+
js = """
|
8 |
+
function updateCssText(text, letters) {
|
9 |
+
let wordsArr = text.split(" ")
|
10 |
+
let lettersWordsArr = letters.split(" ")
|
11 |
+
let speechOutputContainer = document.querySelector('#speech-output');
|
12 |
+
speechOutputContainer.textContent = ""
|
13 |
+
|
14 |
+
for (let idx in wordsArr) {
|
15 |
+
let word = wordsArr[idx]
|
16 |
+
let letterIsCorrect = lettersWordsArr[idx]
|
17 |
+
for (let idx1 in word) {
|
18 |
+
let letterCorrect = letterIsCorrect[idx1] == "1"
|
19 |
+
let containerLetter = document.createElement("span")
|
20 |
+
containerLetter.style.color = letterCorrect ? 'green' : "red"
|
21 |
+
containerLetter.innerText = word[idx1];
|
22 |
+
speechOutputContainer.appendChild(containerLetter)
|
23 |
+
}
|
24 |
+
let containerSpace = document.createElement("span")
|
25 |
+
containerSpace.textContent = " "
|
26 |
+
speechOutputContainer.appendChild(containerSpace)
|
27 |
+
}
|
28 |
+
}
|
29 |
+
"""
|
30 |
+
|
31 |
+
with gr.Blocks() as gradio_app:
|
32 |
+
app_logger.info("start gradio app building...")
|
33 |
+
|
34 |
+
gr.Markdown(
|
35 |
"""
|
36 |
+
# AI Pronunciation Trainer
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
+
See [my fork](https://github.com/trincadev/ai-pronunciation-trainer) of [AI Pronunciation Trainer](https://github.com/Thiagohgl/ai-pronunciation-trainer) repositroy
|
39 |
+
for more details.
|
40 |
+
"""
|
41 |
+
)
|
42 |
+
with gr.Row():
|
43 |
+
with gr.Column(scale=4, min_width=300):
|
44 |
+
with gr.Row():
|
45 |
+
with gr.Column(scale=1, min_width=50):
|
46 |
+
language = gr.Radio(["de", "en"], label="Language", value="en")
|
47 |
+
with gr.Column(scale=7, min_width=300):
|
48 |
+
learner_transcription = gr.Textbox(
|
49 |
+
lines=3,
|
50 |
+
label="Learner Transcription",
|
51 |
+
value="Hi there, how are you?",
|
52 |
+
)
|
53 |
+
with gr.Row():
|
54 |
+
learner_recording = gr.Audio(
|
55 |
+
label="Learner Recording",
|
56 |
+
sources=["microphone", "upload"],
|
57 |
+
type="filepath",
|
58 |
+
)
|
59 |
+
with gr.Column(scale=3, min_width=300):
|
60 |
+
transcripted_text = gr.Textbox(
|
61 |
+
lines=2, placeholder=None, label="Transcripted text", visible=False
|
62 |
+
)
|
63 |
+
letter_correctness = gr.Textbox(
|
64 |
+
lines=1,
|
65 |
+
placeholder=None,
|
66 |
+
label="Letters correctness",
|
67 |
+
visible=False,
|
68 |
+
)
|
69 |
+
pronunciation_accuracy = gr.Textbox(
|
70 |
+
lines=1, placeholder=None, label="Pronunciation accuracy %"
|
71 |
+
)
|
72 |
+
recording_ipa = gr.Textbox(
|
73 |
+
lines=1, placeholder=None, label="Learner phonetic transcription"
|
74 |
+
)
|
75 |
+
ideal_ipa = gr.Textbox(
|
76 |
+
lines=1, placeholder=None, label="Ideal phonetic transcription"
|
77 |
+
)
|
78 |
+
res = gr.Textbox(lines=1, placeholder=None, label="RES", visible=False)
|
79 |
+
html_output = gr.HTML(
|
80 |
+
label="Speech accuracy output",
|
81 |
+
elem_id="speech-output",
|
82 |
+
show_label=True,
|
83 |
+
visible=True,
|
84 |
+
render=True,
|
85 |
+
value=" - ",
|
86 |
+
elem_classes="speech-output",
|
87 |
+
)
|
88 |
+
btn = gr.Button(value="Recognize speech accuracy")
|
89 |
+
# real_transcripts, is_letter_correct_all_words, pronunciation_accuracy, result['recording_ipa'], real_transcripts_ipa, res
|
90 |
+
|
91 |
+
btn.click(
|
92 |
+
lambdaSpeechToScore.get_speech_to_score_tuple,
|
93 |
+
inputs=[learner_transcription, learner_recording, language],
|
94 |
+
outputs=[
|
95 |
+
transcripted_text,
|
96 |
+
letter_correctness,
|
97 |
+
pronunciation_accuracy,
|
98 |
+
recording_ipa,
|
99 |
+
ideal_ipa,
|
100 |
+
res,
|
101 |
+
],
|
102 |
+
)
|
103 |
+
html_output.change(
|
104 |
+
None,
|
105 |
+
inputs=[transcripted_text, letter_correctness],
|
106 |
+
outputs=[html_output],
|
107 |
+
js=js,
|
108 |
+
)
|
109 |
|
110 |
|
111 |
if __name__ == "__main__":
|
112 |
+
gradio_app.launch()
|
|
|
|
|
|
|
|
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
ffmpeg
|
pre-requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
pip
|
requirements-flask.txt
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
audioread
|
2 |
+
dtwalign
|
3 |
+
eng_to_ipa
|
4 |
+
epitran==1.25.1
|
5 |
+
flask
|
6 |
+
flask_cors
|
7 |
+
gunicorn
|
8 |
+
omegaconf
|
9 |
+
ortools==9.11.4210
|
10 |
+
pandas
|
11 |
+
pickle-mixin
|
12 |
+
python-dotenv
|
13 |
+
requests
|
14 |
+
sentencepiece
|
15 |
+
silero==0.4.1
|
16 |
+
soundfile==0.12.1
|
17 |
+
sqlalchemy
|
18 |
+
structlog
|
19 |
+
torch
|
20 |
+
torchaudio
|
21 |
+
transformers
|
requirements.txt
CHANGED
@@ -1,9 +1,8 @@
|
|
|
|
1 |
audioread
|
2 |
dtwalign
|
3 |
eng_to_ipa
|
4 |
epitran==1.25.1
|
5 |
-
flask
|
6 |
-
flask_cors
|
7 |
gunicorn
|
8 |
omegaconf
|
9 |
ortools==9.11.4210
|
@@ -14,7 +13,6 @@ requests
|
|
14 |
sentencepiece
|
15 |
silero==0.4.1
|
16 |
soundfile==0.12.1
|
17 |
-
sqlalchemy
|
18 |
structlog
|
19 |
torch
|
20 |
torchaudio
|
|
|
1 |
+
asgi-correlation-id
|
2 |
audioread
|
3 |
dtwalign
|
4 |
eng_to_ipa
|
5 |
epitran==1.25.1
|
|
|
|
|
6 |
gunicorn
|
7 |
omegaconf
|
8 |
ortools==9.11.4210
|
|
|
13 |
sentencepiece
|
14 |
silero==0.4.1
|
15 |
soundfile==0.12.1
|
|
|
16 |
structlog
|
17 |
torch
|
18 |
torchaudio
|
tests/test_GetAccuracyFromRecordedAudio.py
CHANGED
@@ -86,7 +86,7 @@ class TestGetAccuracyFromRecordedAudio(unittest.TestCase):
|
|
86 |
|
87 |
language = "en"
|
88 |
path = EVENTS_FOLDER / f"test_{language}.wav"
|
89 |
-
output = lambdaSpeechToScore.
|
90 |
real_text=text_dict[language],
|
91 |
file_bytes_or_audiotmpfile=path,
|
92 |
language=language,
|
@@ -105,14 +105,14 @@ class TestGetAccuracyFromRecordedAudio(unittest.TestCase):
|
|
105 |
"end_time": "0.559875 1.658125 1.14825 1.344375 1.658125",
|
106 |
"is_letter_correct_all_words": "11 000001 111 111 1111 ",
|
107 |
}
|
108 |
-
check_output(self,
|
109 |
|
110 |
def test_get_speech_to_score_de_ok(self):
|
111 |
from aip_trainer.lambdas import lambdaSpeechToScore
|
112 |
|
113 |
language = "de"
|
114 |
path = EVENTS_FOLDER / f"test_{language}.wav"
|
115 |
-
output = lambdaSpeechToScore.
|
116 |
real_text=text_dict[language],
|
117 |
file_bytes_or_audiotmpfile=path,
|
118 |
language=language,
|
@@ -131,7 +131,7 @@ class TestGetAccuracyFromRecordedAudio(unittest.TestCase):
|
|
131 |
"end_time": "0.328 0.6458125 1.44025 2.4730625 2.15525 2.4730625",
|
132 |
"is_letter_correct_all_words": "111 111 11111 000 1011 111 ",
|
133 |
}
|
134 |
-
check_output(self,
|
135 |
|
136 |
|
137 |
if __name__ == "__main__":
|
|
|
86 |
|
87 |
language = "en"
|
88 |
path = EVENTS_FOLDER / f"test_{language}.wav"
|
89 |
+
output = lambdaSpeechToScore.get_speech_to_score_dict(
|
90 |
real_text=text_dict[language],
|
91 |
file_bytes_or_audiotmpfile=path,
|
92 |
language=language,
|
|
|
105 |
"end_time": "0.559875 1.658125 1.14825 1.344375 1.658125",
|
106 |
"is_letter_correct_all_words": "11 000001 111 111 1111 ",
|
107 |
}
|
108 |
+
check_output(self, output, expected_output)
|
109 |
|
110 |
def test_get_speech_to_score_de_ok(self):
|
111 |
from aip_trainer.lambdas import lambdaSpeechToScore
|
112 |
|
113 |
language = "de"
|
114 |
path = EVENTS_FOLDER / f"test_{language}.wav"
|
115 |
+
output = lambdaSpeechToScore.get_speech_to_score_dict(
|
116 |
real_text=text_dict[language],
|
117 |
file_bytes_or_audiotmpfile=path,
|
118 |
language=language,
|
|
|
131 |
"end_time": "0.328 0.6458125 1.44025 2.4730625 2.15525 2.4730625",
|
132 |
"is_letter_correct_all_words": "111 111 11111 000 1011 111 ",
|
133 |
}
|
134 |
+
check_output(self, output, expected_output)
|
135 |
|
136 |
|
137 |
if __name__ == "__main__":
|