import numpy as np import torch from aip_trainer.models import ModelInterfaces class NeuralASR(ModelInterfaces.IASRModel): word_locations_in_samples = None audio_transcript = None def __init__(self, model: torch.nn.Module, decoder) -> None: super().__init__() self.model = model self.decoder = decoder # Decoder from CTC-outputs to transcripts def getTranscript(self) -> str: """Get the transcripts of the process audio""" assert self.audio_transcript is not None, 'Can get audio transcripts without having processed the audio' return self.audio_transcript def getWordLocations(self) -> list: """Get the pair of words location from audio""" assert self.word_locations_in_samples is not None, 'Can get word locations without having processed the audio' return self.word_locations_in_samples def processAudio(self, audio: torch.Tensor): """Process the audio""" audio_length_in_samples = audio.shape[1] with torch.inference_mode(): nn_output = self.model(audio) self.audio_transcript, self.word_locations_in_samples = self.decoder( nn_output[0, :, :].detach(), audio_length_in_samples, word_align=True)