import ModelInterfaces import torch import numpy as np class NeuralASR(ModelInterfaces.IASRModel): word_locations_in_samples = None audio_transcript = None def __init__(self, model: torch.nn.Module, decoder) -> None: super().__init__() self.model = model self.decoder = decoder # Decoder from CTC-outputs to transcripts def getTranscript(self) -> str: """Get the transcripts of the process audio""" assert(self.audio_transcript != None, 'Can get audio transcripts without having processed the audio') return self.audio_transcript def getWordLocations(self) -> list: """Get the pair of words location from audio""" assert(self.word_locations_in_samples != None, 'Can get word locations without having processed the audio') return self.word_locations_in_samples def processAudio(self, audio: torch.Tensor): """Process the audio""" audio_length_in_samples = audio.shape[1] with torch.inference_mode(): nn_output = self.model(audio) self.audio_transcript, self.word_locations_in_samples = self.decoder( nn_output[0, :, :].detach(), audio_length_in_samples, word_align=True) class NeuralTTS(ModelInterfaces.ITextToSpeechModel): def __init__(self, model: torch.nn.Module, sampling_rate: int) -> None: super().__init__() self.model = model self.sampling_rate = sampling_rate def getAudioFromSentence(self, sentence: str) -> np.array: with torch.inference_mode(): audio_transcript = self.model.apply_tts(texts=[sentence], sample_rate=self.sampling_rate)[0] return audio_transcript class NeuralTranslator(ModelInterfaces.ITranslationModel): def __init__(self, model: torch.nn.Module, tokenizer) -> None: super().__init__() self.model = model self.tokenizer = tokenizer def translateSentence(self, sentence: str) -> str: """Get the transcripts of the process audio""" tokenized_text = self.tokenizer(sentence, return_tensors='pt') translation = self.model.generate(**tokenized_text) translated_text = self.tokenizer.batch_decode( translation, skip_special_tokens=True)[0] return translated_text