from pathlib import Path import gradio as gr from aip_trainer import PROJECT_ROOT_FOLDER, app_logger, sample_rate_start from aip_trainer.lambdas import js, lambdaGetSample, lambdaSpeechToScore, lambdaTTS css = """ .speech-output-label p {color: grey; margin-bottom: white;} .background-white {background-color: white !important; } .speech-output-group {padding: 12px;} .speech-output-container {min-height: 60px;} .speech-output-html {text-align: left; } """ word_idx_text = "Selected word index" def get_textbox_hidden(text = None): if text: return gr.Number(value=text, visible=False) return gr.Textbox(visible=False) def get_number_hidden(x: int = None): if x: return gr.Number(value=x, visible=False) return gr.Number(visible=False) def clear(): return None def clear2(): return None, None with gr.Blocks(css=css, head=js.head_driver_tour) as gradio_app: local_storage = gr.BrowserState([0.0, 0.0]) app_logger.info("start gradio app building...") project_root_folder = Path(PROJECT_ROOT_FOLDER) with open(project_root_folder / "aip_trainer" / "lambdas" / "app_description.md", "r", encoding="utf-8") as app_description_src: md_app_description = app_description_src.read() gr.Markdown(md_app_description.format(sample_rate_start=sample_rate_start)) with gr.Row(): with gr.Column(scale=4, min_width=300): with gr.Row(): with gr.Column(scale=2, min_width=80): radio_language = gr.Radio(["de", "en"], label="Language", value="en", elem_id="radio-language-id-element") with gr.Column(scale=5, min_width=160): radio_difficulty = gr.Radio( label="Difficulty", value=0, choices=[ ("random", 0), ("easy", 1), ("medium", 2), ("hard", 3), ], elem_id="radio-difficulty-id-element", ) with gr.Column(scale=1, min_width=100): btn_random_phrase = gr.Button(value="Choose a random phrase", elem_id="btn-random-phrase-id-element") with gr.Row(): with gr.Column(scale=7, min_width=300): text_student_transcription = gr.Textbox( lines=3, label="Phrase to read for speech recognition", value="Hi there, how are you?", elem_id="text-student-transcription-id-element", ) with gr.Row(): audio_tts = gr.Audio(label="Audio TTS", elem_id="audio-tts-id-element") with gr.Row(): btn_run_tts = gr.Button(value="TTS in browser", elem_id="btn-run-tts-id-element") btn_run_tts_backend = gr.Button(value="TTS backend", elem_id="btn-run-tts-backend-id-element") btn_clear_tts = gr.Button(value="Clear TTS backend", elem_id="btn-clear-tts-backend-id-element") btn_clear_tts.click(clear, inputs=[], outputs=[audio_tts]) with gr.Row(): audio_student_recording_stt = gr.Audio( label="Record a speech to evaluate", sources=["microphone", "upload"], type="filepath", show_download_button=True, elem_id="audio-student-recording-stt-id-element", ) with gr.Row(): num_audio_duration_hidden = gr.Number(label="num_first_audio_duration", value=0, interactive=False, visible=False) with gr.Accordion("Click here to expand the table examples", open=False, elem_id="accordion-examples-id-element"): examples_text = gr.Examples( examples=[ ["Hallo, wie geht es dir?", "de", 1], ["Hi there, how are you?", "en", 1], ["Die König-Ludwig-Eiche ist ein Naturdenkmal im Staatsbad Brückenau.", "de", 2,], ["Rome is home to some of the most beautiful monuments in the world.", "en", 2], ["Die König-Ludwig-Eiche ist ein Naturdenkmal im Staatsbad Brückenau, einem Ortsteil des drei Kilometer nordöstlich gelegenen Bad Brückenau im Landkreis Bad Kissingen in Bayern.", "de", 3], ["Some machine learning models are designed to understand and generate human-like text based on the input they receive.", "en", 3], ], inputs=[text_student_transcription, radio_language, radio_difficulty], elem_id="examples-text-id-element", ) with gr.Column(scale=4, min_width=320): text_transcribed_hidden = gr.Textbox( placeholder=None, label="Transcribed text", visible=False ) text_letter_correctness = gr.Textbox( placeholder=None, label="Letters correctness", visible=False, ) text_recording_ipa = gr.Textbox( placeholder=None, label="Student phonetic transcription", elem_id="text-student-recording-ipa-id-element" ) text_ideal_ipa = gr.Textbox( placeholder=None, label="Ideal phonetic transcription", elem_id="text-ideal-ipa-id-element" ) text_raw_json_output_hidden = gr.Textbox(placeholder=None, label="text_raw_json_output_hidden", visible=False) with gr.Group(elem_classes="speech-output-group background-white"): gr.Markdown("Speech accuracy output", elem_classes="speech-output-label background-white") with gr.Group(elem_classes="speech-output-container background-white"): html_output = gr.HTML( label="Speech accuracy output", elem_id="speech-output", show_label=False, visible=True, render=True, value=" - ", elem_classes="speech-output-html background-white", ) with gr.Row(): with gr.Column(min_width=100, elem_classes="speech-accuracy-score-container row2 col1"): num_pronunciation_accuracy = gr.Number(label="Current score %", elem_id="number-pronunciation-accuracy-id-element") with gr.Column(min_width=100, elem_classes="speech-accuracy-score-container row2 col2"): num_score_de = gr.Number(label="Global score DE %", value=0, interactive=False, elem_id="number-score-de-id-element") with gr.Column(min_width=100, elem_classes="speech-accuracy-score-container row2 col3"): num_score_en = gr.Number(label="Global score EN %", value=0, interactive=False, elem_id="number-score-en-id-element") btn_recognize_speech_accuracy = gr.Button(value="Get speech accuracy score (%)", elem_id="btn-recognize-speech-accuracy-id-element") with gr.Row(): num_tot_recognized_words = gr.Number(label="Total recognized words", visible=False, minimum=0, interactive=False) with gr.Column(scale=1, min_width=50): num_selected_recognized_word = gr.Number(label=word_idx_text, visible=True, minimum=0, value=0, interactive=False) with gr.Column(scale=4, min_width=100): audio_splitted_student_recording_stt = gr.Audio( label="Splitted student speech output", type="filepath", show_download_button=True, elem_id="audio-splitted-student-recording-stt-id-element", ) text_selected_recognized_word_hidden = gr.Textbox(label="text_selected_recognized_word", value="placeholder", interactive=False, visible=False) def get_updated_score_by_language(text: str, audio_rec: str | Path, lang: str, score_de: float, score_en: float): import json _transcribed_text, _letter_correctness, _pronunciation_accuracy, _recording_ipa, _ideal_ipa, _num_tot_recognized_word, first_audio_file, _res = lambdaSpeechToScore.get_speech_to_score_tuple(text, audio_rec, lang, remove_random_file=False) new_num_selected_recognized_word = gr.Number(label=word_idx_text, visible=True, value=0) words_list = _transcribed_text.split() first_word = words_list[0] json_res_loaded = json.loads(_res) audio_durations = json_res_loaded["audio_durations"] first_audio_duration = audio_durations[0] output = { text_transcribed_hidden: _transcribed_text, text_letter_correctness: _letter_correctness, num_pronunciation_accuracy: _pronunciation_accuracy, text_recording_ipa: _recording_ipa, text_ideal_ipa: _ideal_ipa, text_raw_json_output_hidden: _res, num_tot_recognized_words: _num_tot_recognized_word, num_selected_recognized_word: new_num_selected_recognized_word, audio_splitted_student_recording_stt: first_audio_file, text_selected_recognized_word_hidden: first_word, num_audio_duration_hidden: first_audio_duration } match lang: case "de": return { num_score_de: float(score_de) + float(_pronunciation_accuracy), num_score_en: float(score_en), **output } case "en": return { num_score_en: float(score_en) + float(_pronunciation_accuracy), num_score_de: float(score_de), **output } case _: raise NotImplementedError(f"Language {lang} not supported") btn_recognize_speech_accuracy.click( get_updated_score_by_language, inputs=[text_student_transcription, audio_student_recording_stt, radio_language, num_score_de, num_score_en], outputs=[ text_transcribed_hidden, text_letter_correctness, num_pronunciation_accuracy, text_recording_ipa, text_ideal_ipa, text_raw_json_output_hidden, num_score_de, num_score_en, num_tot_recognized_words, num_selected_recognized_word, audio_splitted_student_recording_stt, text_selected_recognized_word_hidden, num_audio_duration_hidden ], ) def change_max_selected_words(n): app_logger.info(f"change_max_selected_words: {n} ...") num_max_selected_words = n -1 app_logger.info(f"num_selected_recognized_words.maximum, pre: {num_selected_recognized_word.maximum} ...") label = word_idx_text if n == 0 else f"{word_idx_text} (from 0 to {num_max_selected_words})" interactive = n > 0 app_logger.info(f"change_max_selected_words: {n}, is interactive? {interactive} ...") new_num_selected_recognized_words = gr.Number(label=label, visible=True, value=0, minimum=0, maximum=num_max_selected_words, interactive=interactive) app_logger.info(f"num_selected_recognized_words.maximum, post: {num_selected_recognized_word.maximum} ...") return new_num_selected_recognized_words num_tot_recognized_words.change( fn=change_max_selected_words, inputs=[num_tot_recognized_words], outputs=[num_selected_recognized_word], ) def clear3(): return None, None, None, None, None, None, 0, 0, 0 text_student_transcription.change( clear3, inputs=[], outputs=[ audio_student_recording_stt, audio_tts, audio_splitted_student_recording_stt, text_recording_ipa, text_ideal_ipa, text_transcribed_hidden, num_pronunciation_accuracy, num_selected_recognized_word, num_pronunciation_accuracy ], ) def reset_max_total_recognized_words(content_text_recording_ipa, content_num_tot_recognized_words): if content_text_recording_ipa is None or content_text_recording_ipa == "": app_logger.info("reset_max_total_recognized_words...") new_num_tot_recognized_words = gr.Number(label="Total recognized words", visible=False, value=0, minimum=0, interactive=False) return new_num_tot_recognized_words return content_num_tot_recognized_words text_recording_ipa.change( reset_max_total_recognized_words, inputs=[text_recording_ipa, num_tot_recognized_words], outputs=[ num_tot_recognized_words ], ) text_recording_ipa.change( None, inputs=[get_textbox_hidden(), get_textbox_hidden(), get_number_hidden()], outputs=[html_output], js=js.js_update_ipa_output, ) btn_run_tts.click(fn=None, inputs=[text_student_transcription, radio_language], outputs=audio_tts, js=js.js_play_audio) btn_run_tts_backend.click( fn=lambdaTTS.get_tts, inputs=[text_student_transcription, radio_language], outputs=audio_tts, ) btn_random_phrase.click( fn=lambdaGetSample.get_random_selection, inputs=[radio_language, radio_difficulty], outputs=[text_student_transcription], ) btn_random_phrase.click( clear2, inputs=[], outputs=[audio_student_recording_stt, audio_tts] ) html_output.change( None, inputs=[text_transcribed_hidden, text_letter_correctness, num_selected_recognized_word], outputs=[html_output], js=js.js_update_ipa_output, ) num_selected_recognized_word.input( fn=lambdaSpeechToScore.get_selected_word, inputs=[num_selected_recognized_word, text_raw_json_output_hidden], outputs=[audio_splitted_student_recording_stt, text_selected_recognized_word_hidden, num_audio_duration_hidden], ) audio_splitted_student_recording_stt.play( fn=None, # text, language, sleepTime = null, prefix = null inputs=[text_selected_recognized_word_hidden, radio_language, num_audio_duration_hidden], outputs=audio_splitted_student_recording_stt, js=js.js_play_audio ) @gradio_app.load(inputs=[local_storage], outputs=[num_score_de, num_score_en]) def load_from_local_storage(saved_values): print("loading from local storage", saved_values) return saved_values[0], saved_values[1] @gr.on([num_score_de.change, num_score_en.change], inputs=[num_score_de, num_score_en], outputs=[local_storage]) def save_to_local_storage(score_de, score_en): return [score_de, score_en] if __name__ == "__main__": try: gradio_app.launch() except Exception as e: app_logger.error(f"Error: {e}") raise e