import numpy as np # ref from https://gitlab.com/-/snippets/1948157 # For some variants, look here https://en.wikibooks.org/wiki/Algorithm_Implementation/Strings/Levenshtein_distance#Python # Pure/numpy python def edit_distance_python2(a: str, b: str) -> np.ndarray | int: """A pure python levenshtein distance implementation""" # This version is commutative, so as an optimization we force |a|>=|b| if len(a) < len(b): return edit_distance_python(b, a) if len(b) == 0: # Can deal with empty sequences faster return len(a) # Only two rows are really needed: the one currently filled in, and the previous distances = [] distances.append([i for i in range(len(b) + 1)]) distances.append([0 for _ in range(len(b) + 1)]) # We can prefill the first row: costs = [0 for _ in range(3)] for i, a_token in enumerate(a, start=1): distances[1][0] += 1 # Deals with the first column. for j, b_token in enumerate(b, start=1): costs[0] = distances[1][j - 1] + 1 costs[1] = distances[0][j] + 1 costs[2] = distances[0][j - 1] + (0 if a_token == b_token else 1) distances[1][j] = min(costs) # Move to the next row: distances[0][:] = distances[1][:] return distances[1][len(b)] #https://stackabuse.com/levenshtein-distance-and-text-similarity-in-python/ def edit_distance_python(seq1: str, seq2: str) -> np.ndarray: """A levenshtein distance implementation. Args: seq1 (str): First sequence. seq2 (str): Second sequence. Returns: np.ndarray: The levenshtein distance between the two sequences. """ size_x = len(seq1) + 1 size_y = len(seq2) + 1 matrix = np.zeros((size_x, size_y)) for x in range(size_x): matrix[x, 0] = x for y in range(size_y): matrix[0, y] = y for x in range(1, size_x): for y in range(1, size_y): if seq1[x - 1] == seq2[y - 1]: matrix[x, y] = min( matrix[x - 1, y] + 1, matrix[x - 1, y - 1], matrix[x, y - 1] + 1 ) else: matrix[x, y] = min( matrix[x - 1, y] + 1, matrix[x - 1, y - 1] + 1, matrix[x, y - 1] + 1 ) #print (matrix) return matrix[size_x - 1, size_y - 1]