File size: 16,372 Bytes
3d9fba4
 
 
 
 
 
 
 
 
 
 
e5c9ee0
 
 
 
3d9fba4
 
 
 
 
 
 
 
e5c9ee0
 
3d9fba4
 
 
e5c9ee0
 
 
3d9fba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5c9ee0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d9fba4
e5c9ee0
6144294
e5c9ee0
3d9fba4
e5c9ee0
 
 
 
 
3d9fba4
 
 
 
 
e5c9ee0
3d9fba4
 
 
 
 
 
 
 
 
 
e5c9ee0
 
 
 
 
 
 
 
3d9fba4
 
e5c9ee0
3d9fba4
 
 
e5c9ee0
 
 
 
 
 
 
 
3d9fba4
 
 
 
e5c9ee0
 
 
 
 
 
 
 
3d9fba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e53daa9
3d9fba4
 
 
 
 
 
 
 
 
 
 
e53daa9
 
3d9fba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e53daa9
3d9fba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6144294
3d9fba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6144294
3d9fba4
 
 
 
 
 
 
 
6144294
3d9fba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6144294
3d9fba4
 
 
 
 
e5c9ee0
 
 
3d9fba4
 
 
 
 
 
 
 
 
 
 
 
 
 
e5c9ee0
 
3d9fba4
 
 
e5c9ee0
 
3d9fba4
e5c9ee0
3d9fba4
 
 
e5c9ee0
3d9fba4
 
 
 
 
 
 
 
e5c9ee0
3d9fba4
 
 
 
 
 
e5c9ee0
3d9fba4
 
 
 
 
 
 
e5c9ee0
 
3d9fba4
 
 
e5c9ee0
 
 
 
3d9fba4
6144294
3d9fba4
 
 
 
e5c9ee0
3d9fba4
 
 
e5c9ee0
 
 
3d9fba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5c9ee0
 
3d9fba4
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
import glob
import os
import random

import cv2
import numpy as np
import torch
import torch.nn.functional as F
from pycocotools import mask
from transformers import CLIPImageProcessor

from model.llava import conversation as conversation_lib
from model.llava.constants import (DEFAULT_IMAGE_TOKEN, IGNORE_INDEX,
                                   IMAGE_TOKEN_INDEX)
from model.llava.mm_utils import tokenizer_image_token
from model.segment_anything.utils.transforms import ResizeLongestSide

from .conversation import get_default_conv_template
from .data_processing import get_mask_from_json
from .reason_seg_dataset import ReasonSegDataset
from .refer import REFER
from .refer_seg_dataset import ReferSegDataset
from .sem_seg_dataset import SemSegDataset
from .utils import (DEFAULT_IM_END_TOKEN, DEFAULT_IM_START_TOKEN,
                    DEFAULT_IMAGE_TOKEN)
from .vqa_dataset import VQADataset


def collate_fn(
    batch, tokenizer=None, conv_type="llava_v1", use_mm_start_end=True, local_rank=-1
):
    image_path_list = []
    images_list = []
    images_clip_list = []
    conversation_list = []
    masks_list = []
    label_list = []
    resize_list = []
    questions_list = []
    sampled_classes_list = []
    offset_list = [0]
    cnt = 0
    inferences = []
    for (
        image_path,
        images,
        images_clip,
        conversations,
        masks,
        label,
        resize,
        questions,
        sampled_classes,
        inference,
    ) in batch:
        image_path_list.append(image_path)
        images_list.append(images)
        images_clip_list.append(images_clip)
        conversation_list.extend(conversations)
        label_list.append(label)
        masks_list.append(masks.float())
        resize_list.append(resize)
        questions_list.append(questions)
        sampled_classes_list.append(sampled_classes)
        cnt += len(conversations)
        offset_list.append(cnt)
        inferences.append(inference)

    if use_mm_start_end:
        # replace <image> token
        for i in range(len(conversation_list)):
            replace_token = DEFAULT_IMAGE_TOKEN
            replace_token = (
                DEFAULT_IM_START_TOKEN + replace_token + DEFAULT_IM_END_TOKEN
            )
            conversation_list[i] = conversation_list[i].replace(
                DEFAULT_IMAGE_TOKEN, replace_token
            )
    input_ids = [
        tokenizer_image_token(prompt, tokenizer, return_tensors="pt")
        for prompt in conversation_list
    ]
    input_ids = torch.nn.utils.rnn.pad_sequence(
        input_ids, batch_first=True, padding_value=tokenizer.pad_token_id
    )
    attention_masks = input_ids.ne(tokenizer.pad_token_id)

    conv = conversation_lib.default_conversation.copy()
    targets = input_ids.clone()

    if conv_type == "llava_v1":
        sep = conv.sep + conv.roles[1] + ": "
    else:
        sep = "[/INST] "
    for conversation, target in zip(conversation_list, targets):
        total_len = int(target.ne(tokenizer.pad_token_id).sum())

        rounds = conversation.split(conv.sep2)
        cur_len = 1
        target[:cur_len] = IGNORE_INDEX
        for i, rou in enumerate(rounds):
            if rou == "":
                break

            parts = rou.split(sep)
            # if len(parts) != 2:
            #     break
            assert len(parts) == 2, (len(parts), rou)
            parts[0] += sep

            if DEFAULT_IMAGE_TOKEN in conversation:
                round_len = len(tokenizer_image_token(rou, tokenizer))
                instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) - 2
            else:
                round_len = len(tokenizer(rou).input_ids)
                instruction_len = len(tokenizer(parts[0]).input_ids) - 2

            target[cur_len : cur_len + instruction_len] = IGNORE_INDEX

            cur_len += round_len
        target[cur_len:] = IGNORE_INDEX

        if False:
            z = target.clone()
            z = torch.where(z == IGNORE_INDEX, tokenizer.unk_token_id, z)
            if local_rank == 0:
                print(
                    "conversation: ",
                    conversation,
                    "tokenizer.decode(z): ",
                    tokenizer.decode(z),
                )

        if cur_len < tokenizer.model_max_length:
            assert cur_len == total_len

    if inferences[0] == False:
        truncate_len = tokenizer.model_max_length - 255

        if input_ids.shape[1] > truncate_len:
            input_ids = input_ids[:, :truncate_len]
            targets = targets[:, :truncate_len]
            attention_masks = attention_masks[:, :truncate_len]

    return {
        "image_paths": image_path_list,
        "images": torch.stack(images_list, dim=0),
        "images_clip": torch.stack(images_clip_list, dim=0),
        "input_ids": input_ids,
        "labels": targets,
        "attention_masks": attention_masks,
        "masks_list": masks_list,
        "label_list": label_list,
        "resize_list": resize_list,
        "offset": torch.LongTensor(offset_list),
        "questions_list": questions_list,
        "sampled_classes_list": sampled_classes_list,
        "inference": inferences[0],
        "conversation_list": conversation_list,
    }


class HybridDataset(torch.utils.data.Dataset):
    pixel_mean = torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1)
    pixel_std = torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1)
    img_size = 1024
    ignore_label = 255

    def __init__(
        self,
        base_image_dir,
        tokenizer,
        vision_tower,
        samples_per_epoch=500 * 8 * 2 * 10,
        precision: str = "fp32",
        image_size: int = 224,
        num_classes_per_sample: int = 3,
        exclude_val=False,
        dataset="sem_seg||refer_seg||vqa||reason_seg",
        sample_rate=[9, 3, 3, 1],
        sem_seg_data="ade20k||cocostuff||partimagenet||pascal_part||paco_lvis||mapillary",
        refer_seg_data="refclef||refcoco||refcoco+||refcocog",
        vqa_data="llava_instruct_150k",
        reason_seg_data="ReasonSeg|train",
        explanatory=0.1,
    ):
        self.exclude_val = exclude_val
        self.dataset = dataset
        self.samples_per_epoch = samples_per_epoch
        self.explanatory = explanatory
        self.num_classes_per_sample = num_classes_per_sample
        sample_rate = np.array(sample_rate)
        self.sample_rate = sample_rate / sample_rate.sum()

        self.base_image_dir = base_image_dir
        self.image_size = image_size
        self.tokenizer = tokenizer
        self.precision = precision

        self.datasets = dataset.split("||")

        self.all_datasets = []
        for dataset in self.datasets:
            if dataset == "sem_seg":
                self.all_datasets.append(
                    SemSegDataset(
                        base_image_dir,
                        tokenizer,
                        vision_tower,
                        samples_per_epoch,
                        precision,
                        image_size,
                        num_classes_per_sample,
                        exclude_val,
                        sem_seg_data,
                    )
                )
            elif dataset == "refer_seg":
                self.all_datasets.append(
                    ReferSegDataset(
                        base_image_dir,
                        tokenizer,
                        vision_tower,
                        samples_per_epoch,
                        precision,
                        image_size,
                        num_classes_per_sample,
                        exclude_val,
                        refer_seg_data,
                    )
                )
            elif dataset == "vqa":
                self.all_datasets.append(
                    VQADataset(
                        base_image_dir,
                        tokenizer,
                        vision_tower,
                        samples_per_epoch,
                        precision,
                        image_size,
                        num_classes_per_sample,
                        exclude_val,
                        vqa_data,
                    )
                )
            elif dataset == "reason_seg":
                self.all_datasets.append(
                    ReasonSegDataset(
                        base_image_dir,
                        tokenizer,
                        vision_tower,
                        samples_per_epoch,
                        precision,
                        image_size,
                        num_classes_per_sample,
                        exclude_val,
                        reason_seg_data,
                        explanatory,
                    )
                )

    def __len__(self):
        return self.samples_per_epoch

    def __getitem__(self, idx):
        ind = np.random.choice(list(range(len(self.datasets))), p=self.sample_rate)
        data = self.all_datasets[ind]
        inference = False
        return *data[0], inference


class ValDataset(torch.utils.data.Dataset):
    pixel_mean = torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1)
    pixel_std = torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1)
    img_size = 1024
    ignore_label = 255

    def __init__(
        self,
        base_image_dir,
        tokenizer,
        vision_tower,
        val_dataset,
        image_size=1024,
    ):
        self.base_image_dir = base_image_dir
        splits = val_dataset.split("|")
        if len(splits) == 2:
            ds, split = splits
            images = glob.glob(
                os.path.join(self.base_image_dir, "reason_seg", ds, split, "*.jpg")
            )
            self.images = images
            self.data_type = "reason_seg"
        elif len(splits) == 3:
            ds, splitBy, split = splits
            refer_api = REFER(self.base_image_dir, ds, splitBy)
            ref_ids_val = refer_api.getRefIds(split=split)
            images_ids_val = refer_api.getImgIds(ref_ids=ref_ids_val)
            refs_val = refer_api.loadRefs(ref_ids=ref_ids_val)
            refer_seg_ds = {}
            refer_seg_ds["images"] = []
            loaded_images = refer_api.loadImgs(image_ids=images_ids_val)
            for item in loaded_images:
                item = item.copy()
                if ds == "refclef":
                    item["file_name"] = os.path.join(
                        base_image_dir, "images/saiapr_tc-12", item["file_name"]
                    )
                elif ds in ["refcoco", "refcoco+", "refcocog", "grefcoco"]:
                    item["file_name"] = os.path.join(
                        base_image_dir,
                        "images/mscoco/images/train2014",
                        item["file_name"],
                    )
                refer_seg_ds["images"].append(item)
            refer_seg_ds["annotations"] = refer_api.Anns  # anns_val

            img2refs = {}
            for ref in refs_val:
                image_id = ref["image_id"]
                img2refs[image_id] = img2refs.get(image_id, []) + [
                    ref,
                ]
            refer_seg_ds["img2refs"] = img2refs
            self.refer_seg_ds = refer_seg_ds
            self.data_type = "refer_seg"

        self.ds = ds
        self.image_size = image_size
        self.tokenizer = tokenizer
        self.transform = ResizeLongestSide(image_size)
        self.clip_image_processor = CLIPImageProcessor.from_pretrained(vision_tower)

    def __len__(self):
        if self.data_type == "refer_seg":
            return len(self.refer_seg_ds["images"])
        else:
            return len(self.images)

    def preprocess(self, x: torch.Tensor) -> torch.Tensor:
        """Normalize pixel values and pad to a square input."""
        # Normalize colors
        x = (x - self.pixel_mean) / self.pixel_std

        # Pad
        h, w = x.shape[-2:]
        padh = self.img_size - h
        padw = self.img_size - w
        x = F.pad(x, (0, padw, 0, padh))
        return x

    def __getitem__(self, idx):
        if self.data_type == "refer_seg":
            refer_seg_ds = self.refer_seg_ds
            images = refer_seg_ds["images"]
            annotations = refer_seg_ds["annotations"]
            img2refs = refer_seg_ds["img2refs"]

            image_info = images[idx]
            image_path = image_info["file_name"]
            image_id = image_info["id"]

            refs = img2refs[image_id]
            if len(refs) == 0:
                raise ValueError("image {} has no refs".format(image_id))

            sents = []
            ann_ids = []
            for ref in refs:
                for sent in ref["sentences"]:
                    sents.append(sent["sent"].strip().lower())
                    ann_ids.append(ref["ann_id"])

            sampled_sents = sents
            sampled_ann_ids = ann_ids
            image = cv2.imread(image_path)
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            is_sentence = False
        else:
            image_path = self.images[idx]
            image = cv2.imread(image_path)
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            json_path = image_path.replace(".jpg", ".json")
            mask_json, sampled_sents, is_sentence = get_mask_from_json(json_path, image)
            sampled_sents = [sampled_sents[0]]

        conversations = []
        conv = conversation_lib.default_conversation.copy()
        i = 0
        while i < len(sampled_sents):
            conv.messages = []
            text = sampled_sents[i].strip()
            if is_sentence:
                conv.append_message(
                    conv.roles[0],
                    DEFAULT_IMAGE_TOKEN
                    + "\n {} Please output segmentation mask.".format(text),
                )
                conv.append_message(conv.roles[1], "[SEG].")
            else:
                conv.append_message(
                    conv.roles[0],
                    DEFAULT_IMAGE_TOKEN
                    + "\n What is {} in this image? Please output segmentation mask.".format(
                        text
                    ),
                )
                conv.append_message(conv.roles[1], "[SEG].")
            conversations.append(conv.get_prompt())
            i += 1

        # preprocess image for clip
        image_clip = self.clip_image_processor.preprocess(image, return_tensors="pt")[
            "pixel_values"
        ][0]

        # preprocess image for sam
        image = self.transform.apply_image(image)
        resize = image.shape[:2]
        image = self.preprocess(torch.from_numpy(image).permute(2, 0, 1).contiguous())

        if self.data_type == "refer_seg":
            masks = []
            for i, ann_id in enumerate(sampled_ann_ids):
                ann = annotations[ann_id]
                if len(ann["segmentation"]) == 0 and sampled_sents[i] != "":
                    m = np.zeros((image_info["height"], image_info["width"], 1))
                else:
                    if type(ann["segmentation"][0]) == list:  # polygon
                        rle = mask.frPyObjects(
                            ann["segmentation"],
                            image_info["height"],
                            image_info["width"],
                        )
                    else:
                        rle = ann["segmentation"]
                        for i in range(len(rle)):
                            if not isinstance(rle[i]["counts"], bytes):
                                rle[i]["counts"] = rle[i]["counts"].encode()
                    m = mask.decode(rle)
                m = np.sum(
                    m, axis=2
                )  # sometimes there are multiple binary map (corresponding to multiple segs)
                m = m.astype(np.uint8)  # convert to np.uint8
                masks.append(m)
        else:
            masks = [mask_json]

        masks = np.stack(masks, axis=0)
        masks = torch.from_numpy(masks)
        labels = torch.ones(masks.shape[1], masks.shape[2]) * self.ignore_label
        inference = True

        return (
            image_path,
            image,
            image_clip,
            conversations,
            masks,
            labels,
            resize,
            None,
            None,
            inference,
        )