File size: 7,954 Bytes
3d9fba4
 
 
 
 
 
 
 
 
 
 
60fa201
 
3d9fba4
 
e5c9ee0
 
 
3d9fba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3caeb35
 
da654fa
 
 
 
6144294
 
 
 
 
 
 
da654fa
 
 
ba91034
da654fa
 
 
 
 
ba91034
da654fa
3d9fba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5c9ee0
 
 
 
 
3d9fba4
 
 
e5c9ee0
3d9fba4
 
 
 
 
 
 
 
 
 
 
e5c9ee0
 
 
3d9fba4
6144294
3d9fba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5c9ee0
3d9fba4
620ddd7
3d9fba4
 
 
 
620ddd7
3d9fba4
 
 
e5c9ee0
3d9fba4
 
 
 
 
 
620ddd7
e5c9ee0
3d9fba4
 
 
 
 
 
 
e5c9ee0
3d9fba4
 
 
 
 
 
 
 
 
 
e5c9ee0
3d9fba4
 
6144294
 
 
 
 
3d9fba4
 
 
 
 
 
 
 
 
e5c9ee0
 
3d9fba4
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import glob
import json
import os
import random

import cv2
import numpy as np
import torch
import torch.nn.functional as F
from transformers import CLIPImageProcessor

from lisa_on_cuda.llava import conversation as conversation_lib
from lisa_on_cuda.segment_anything.utils.transforms import ResizeLongestSide

from .data_processing import get_mask_from_json
from .utils import (ANSWER_LIST, DEFAULT_IMAGE_TOKEN,
                    EXPLANATORY_QUESTION_LIST, LONG_QUESTION_LIST,
                    SHORT_QUESTION_LIST)


class ReasonSegDataset(torch.utils.data.Dataset):
    pixel_mean = torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1)
    pixel_std = torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1)
    img_size = 1024
    ignore_label = 255

    def __init__(
        self,
        base_image_dir,
        tokenizer,
        vision_tower,
        samples_per_epoch=500 * 8 * 2 * 10,
        precision: str = "fp32",
        image_size: int = 224,
        num_classes_per_sample: int = 3,
        exclude_val=False,
        reason_seg_data="ReasonSeg|train",
        explanatory=0.1,
    ):
        self.exclude_val = exclude_val
        self.reason_seg_data = reason_seg_data
        self.samples_per_epoch = samples_per_epoch
        self.explanatory = explanatory
        self.num_classes_per_sample = num_classes_per_sample

        self.base_image_dir = base_image_dir
        self.image_size = image_size
        self.tokenizer = tokenizer
        self.precision = precision
        self.transform = ResizeLongestSide(image_size)
        self.clip_image_processor = CLIPImageProcessor.from_pretrained(vision_tower)

        self.short_question_list = SHORT_QUESTION_LIST
        self.long_question_list = LONG_QUESTION_LIST
        self.answer_list = ANSWER_LIST

        reason_seg_data, splits = reason_seg_data.split("|")
        splits = splits.split("_")
        images = []
        for split in splits:
            images_split = glob.glob(
                os.path.join(
                    base_image_dir, "reason_seg", reason_seg_data, split, "*.jpg"
                )
            )
            images.extend(images_split)
        jsons = [path.replace(".jpg", ".json") for path in images]
        self.reason_seg_data = (images, jsons)

        print("number of reason_seg samples: ", len(images))

        if explanatory != -1:
            self.explanatory_question_list = EXPLANATORY_QUESTION_LIST
            self.img_to_explanation = {}
            with open(
                os.path.join(
                    base_image_dir,
                    "reason_seg",
                    reason_seg_data,
                    "explanatory",
                    "train.json",
                )
            ) as f:
                items = json.load(f)
            for item in items:
                img_name = item["image"]
                self.img_to_explanation[img_name] = {
                    "query": item["query"],
                    "outputs": item["outputs"],
                }

            print("len(self.img_to_explanation): ", len(self.img_to_explanation))

    def __len__(self):
        return self.samples_per_epoch

    def preprocess(self, x: torch.Tensor) -> torch.Tensor:
        """Normalize pixel values and pad to a square input."""
        # Normalize colors
        x = (x - self.pixel_mean) / self.pixel_std

        # Pad
        h, w = x.shape[-2:]
        padh = self.img_size - h
        padw = self.img_size - w
        x = F.pad(x, (0, padw, 0, padh))
        return x

    def __getitem__(self, idx):
        images, jsons = self.reason_seg_data
        idx = random.randint(0, len(images) - 1)
        image_path = images[idx]
        json_path = jsons[idx]

        image = cv2.imread(image_path)
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        ori_size = image.shape[:2]
        # preprocess image for clip
        image_clip = self.clip_image_processor.preprocess(image, return_tensors="pt")[
            "pixel_values"
        ][0]

        mask, sents, is_sentence = get_mask_from_json(json_path, image)
        if len(sents) >= self.num_classes_per_sample:
            sampled_inds = np.random.choice(
                list(range(len(sents))), size=self.num_classes_per_sample, replace=False
            )
        else:
            sampled_inds = list(range(len(sents)))
        sampled_sents = np.vectorize(sents.__getitem__)(sampled_inds).tolist()
        sampled_masks = [
            (mask == 1).astype(np.float32) for _ in range(len(sampled_inds))
        ]

        image = self.transform.apply_image(image)  # preprocess image for sam
        resize = image.shape[:2]

        image_name = image_path.split("/")[-1]
        if self.explanatory != -1 and image_name in self.img_to_explanation:
            if random.random() < self.explanatory:
                choice = 2
            else:
                choice = random.randint(0, 1)

        questions = []
        answers = []
        for text in sampled_sents:
            if is_sentence:
                question_template = random.choice(self.long_question_list)
                questions.append(question_template.format(sent=text))
            else:
                question_template = random.choice(self.short_question_list)
                questions.append(question_template.format(class_name=text.lower()))

            # add explanation if applicable
            img_name = image_path.split("/")[-1]
            if self.explanatory != -1 and img_name in self.img_to_explanation:
                if choice == 0:  # [SEG] token
                    answers.append(random.choice(self.answer_list))
                elif choice == 1:  # [SEG] token + text answer
                    image_name = image_path.split("/")[-1]
                    answer = self.img_to_explanation[image_name]["outputs"]
                    answer = random.choice(self.answer_list) + " {}".format(answer)
                    questions[-1] = (
                        DEFAULT_IMAGE_TOKEN
                        + "\n"
                        + text
                        + " {}".format(random.choice(self.explanatory_question_list))
                    )
                    answers.append(answer)
                elif choice == 2:  # vanilla text answer
                    image_name = image_path.split("/")[-1]
                    answer = self.img_to_explanation[image_name]["outputs"]
                    questions[-1] = DEFAULT_IMAGE_TOKEN + "\n" + text
                    answers.append(answer)
                else:
                    raise ValueError("Not implemented yet.")
            else:
                answers.append(random.choice(self.answer_list))

            conversations = []
            conv = conversation_lib.default_conversation.copy()
            roles = {"human": conv.roles[0], "gpt": conv.roles[1]}

            i = 0
            while i < len(questions):
                conv.messages = []
                conv.append_message(conv.roles[0], questions[i])
                conv.append_message(conv.roles[1], answers[i])
                conversations.append(conv.get_prompt())
                i += 1

        image = self.preprocess(torch.from_numpy(image).permute(2, 0, 1).contiguous())

        image_name = image_path.split("/")[-1]
        if (
            self.explanatory != -1
            and image_name in self.img_to_explanation
            and choice == 2
        ):
            masks = torch.rand(0, *ori_size)
            label = torch.ones(ori_size) * self.ignore_label
        else:
            masks = np.stack(sampled_masks, axis=0)
            masks = torch.from_numpy(masks)
            label = torch.ones(masks.shape[1], masks.shape[2]) * self.ignore_label

        return (
            image_path,
            image,
            image_clip,
            conversations,
            masks,
            label,
            resize,
            questions,
            sampled_sents,
        )