Spaces:
Paused
Paused
File size: 10,816 Bytes
e5c9ee0 c899f8b e5c9ee0 4ffbe39 e5c9ee0 4ffbe39 e5c9ee0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
import argparse
import os
import re
import sys
import bleach
import cv2
import gradio as gr
import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image
from transformers import AutoTokenizer, BitsAndBytesConfig, CLIPImageProcessor
from model.LISA import LISAForCausalLM
from model.llava import conversation as conversation_lib
from model.llava.mm_utils import tokenizer_image_token
from model.segment_anything.utils.transforms import ResizeLongestSide
from utils.utils import (DEFAULT_IM_END_TOKEN, DEFAULT_IM_START_TOKEN,
DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX)
def parse_args(args):
parser = argparse.ArgumentParser(description="LISA chat")
parser.add_argument("--version", default="xinlai/LISA-13B-llama2-v1")
parser.add_argument("--vis_save_path", default="./vis_output", type=str)
parser.add_argument(
"--precision",
default="fp16",
type=str,
choices=["fp32", "bf16", "fp16"],
help="precision for inference",
)
parser.add_argument("--image_size", default=1024, type=int, help="image size")
parser.add_argument("--model_max_length", default=512, type=int)
parser.add_argument("--lora_r", default=8, type=int)
parser.add_argument(
"--vision-tower", default="openai/clip-vit-large-patch14", type=str
)
parser.add_argument("--local-rank", default=0, type=int, help="node rank")
parser.add_argument("--load_in_8bit", action="store_true", default=False)
parser.add_argument("--load_in_4bit", action="store_true", default=False)
parser.add_argument("--use_mm_start_end", action="store_true", default=True)
parser.add_argument(
"--conv_type",
default="llava_v1",
type=str,
choices=["llava_v1", "llava_llama_2"],
)
return parser.parse_args(args)
def preprocess(
x,
pixel_mean=torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1),
pixel_std=torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1),
img_size=1024,
) -> torch.Tensor:
"""Normalize pixel values and pad to a square input."""
# Normalize colors
x = (x - pixel_mean) / pixel_std
# Pad
h, w = x.shape[-2:]
padh = img_size - h
padw = img_size - w
x = F.pad(x, (0, padw, 0, padh))
return x
args = parse_args(sys.argv[1:])
os.makedirs(args.vis_save_path, exist_ok=True)
# Create model
tokenizer = AutoTokenizer.from_pretrained(
args.version,
cache_dir=None,
model_max_length=args.model_max_length,
padding_side="right",
use_fast=False,
)
tokenizer.pad_token = tokenizer.unk_token
args.seg_token_idx = tokenizer("[SEG]", add_special_tokens=False).input_ids[0]
torch_dtype = torch.float32
if args.precision == "bf16":
torch_dtype = torch.bfloat16
elif args.precision == "fp16":
torch_dtype = torch.half
kwargs = {"torch_dtype": torch_dtype}
if args.load_in_4bit:
kwargs.update(
{
"torch_dtype": torch.half,
"load_in_4bit": True,
"quantization_config": BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
llm_int8_skip_modules=["visual_model"],
),
}
)
elif args.load_in_8bit:
kwargs.update(
{
"torch_dtype": torch.half,
"quantization_config": BitsAndBytesConfig(
llm_int8_skip_modules=["visual_model"],
load_in_8bit=True,
),
}
)
model = LISAForCausalLM.from_pretrained(
args.version, low_cpu_mem_usage=True, vision_tower=args.vision_tower, seg_token_idx=args.seg_token_idx, **kwargs
)
model.config.eos_token_id = tokenizer.eos_token_id
model.config.bos_token_id = tokenizer.bos_token_id
model.config.pad_token_id = tokenizer.pad_token_id
model.get_model().initialize_vision_modules(model.get_model().config)
vision_tower = model.get_model().get_vision_tower()
vision_tower.to(dtype=torch_dtype)
if args.precision == "bf16":
model = model.bfloat16().cuda()
elif (
args.precision == "fp16" and (not args.load_in_4bit) and (not args.load_in_8bit)
):
vision_tower = model.get_model().get_vision_tower()
model.model.vision_tower = None
import deepspeed
model_engine = deepspeed.init_inference(
model=model,
dtype=torch.half,
replace_with_kernel_inject=True,
replace_method="auto",
)
model = model_engine.module
model.model.vision_tower = vision_tower.half().cuda()
elif args.precision == "fp32":
model = model.float().cuda()
vision_tower = model.get_model().get_vision_tower()
vision_tower.to(device=args.local_rank)
clip_image_processor = CLIPImageProcessor.from_pretrained(model.config.vision_tower)
transform = ResizeLongestSide(args.image_size)
model.eval()
# Gradio
examples = [
[
"Where can the driver see the car speed in this image? Please output segmentation mask.",
"./resources/imgs/example1.jpg",
],
[
"Can you segment the food that tastes spicy and hot?",
"./resources/imgs/example2.jpg",
],
[
"Assuming you are an autonomous driving robot, what part of the diagram would you manipulate to control the direction of travel? Please output segmentation mask and explain why.",
"./resources/imgs/example1.jpg",
],
[
"What can make the woman stand higher? Please output segmentation mask and explain why.",
"./resources/imgs/example3.jpg",
],
]
output_labels = ["Segmentation Output"]
title = "LISA: Reasoning Segmentation via Large Language Model"
description = """
<font size=4>
This is the online demo of LISA. \n
If multiple users are using it at the same time, they will enter a queue, which may delay some time. \n
**Note**: **Different prompts can lead to significantly varied results**. \n
**Note**: Please try to **standardize** your input text prompts to **avoid ambiguity**, and also pay attention to whether the **punctuations** of the input are correct. \n
**Note**: Current model is **LISA-13B-llama2-v0-explanatory**, and 4-bit quantization may impair text-generation quality. \n
**Usage**: <br>
 (1) To let LISA **segment something**, input prompt like: "Can you segment xxx in this image?", "What is xxx in this image? Please output segmentation mask."; <br>
 (2) To let LISA **output an explanation**, input prompt like: "What is xxx in this image? Please output segmentation mask and explain why."; <br>
 (3) To obtain **solely language output**, you can input like what you should do in current multi-modal LLM (e.g., LLaVA). <br>
Hope you can enjoy our work!
</font>
"""
article = """
<p style='text-align: center'>
<a href='https://arxiv.org/abs/2308.00692' target='_blank'>
Preprint Paper
</a>
\n
<p style='text-align: center'>
<a href='https://github.com/dvlab-research/LISA' target='_blank'> Github Repo </a></p>
"""
## to be implemented
def inference(input_str, input_image):
## filter out special chars
input_str = bleach.clean(input_str)
print("input_str: ", input_str, "input_image: ", input_image)
## input valid check
if not re.match(r"^[A-Za-z ,.!?\'\"]+$", input_str) or len(input_str) < 1:
output_str = "[Error] Invalid input: ", input_str
# output_image = np.zeros((128, 128, 3))
## error happened
output_image = cv2.imread("./resources/error_happened.png")[:, :, ::-1]
return output_image, output_str
# Model Inference
conv = conversation_lib.conv_templates[args.conv_type].copy()
conv.messages = []
prompt = input_str
prompt = DEFAULT_IMAGE_TOKEN + "\n" + prompt
if args.use_mm_start_end:
replace_token = (
DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN
)
prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token)
conv.append_message(conv.roles[0], prompt)
conv.append_message(conv.roles[1], "")
prompt = conv.get_prompt()
image_np = cv2.imread(input_image)
image_np = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
original_size_list = [image_np.shape[:2]]
image_clip = (
clip_image_processor.preprocess(image_np, return_tensors="pt")[
"pixel_values"
][0]
.unsqueeze(0)
.cuda()
)
if args.precision == "bf16":
image_clip = image_clip.bfloat16()
elif args.precision == "fp16":
image_clip = image_clip.half()
else:
image_clip = image_clip.float()
image = transform.apply_image(image_np)
resize_list = [image.shape[:2]]
image = (
preprocess(torch.from_numpy(image).permute(2, 0, 1).contiguous())
.unsqueeze(0)
.cuda()
)
if args.precision == "bf16":
image = image.bfloat16()
elif args.precision == "fp16":
image = image.half()
else:
image = image.float()
input_ids = tokenizer_image_token(prompt, tokenizer, return_tensors="pt")
input_ids = input_ids.unsqueeze(0).cuda()
output_ids, pred_masks = model.evaluate(
image_clip,
image,
input_ids,
resize_list,
original_size_list,
max_new_tokens=512,
tokenizer=tokenizer,
)
output_ids = output_ids[0][output_ids[0] != IMAGE_TOKEN_INDEX]
text_output = tokenizer.decode(output_ids, skip_special_tokens=False)
text_output = text_output.replace("\n", "").replace(" ", " ")
text_output = text_output.split("ASSISTANT: ")[-1]
print("text_output: ", text_output)
save_img = None
for i, pred_mask in enumerate(pred_masks):
if pred_mask.shape[0] == 0:
continue
pred_mask = pred_mask.detach().cpu().numpy()[0]
pred_mask = pred_mask > 0
save_img = image_np.copy()
save_img[pred_mask] = (
image_np * 0.5
+ pred_mask[:, :, None].astype(np.uint8) * np.array([255, 0, 0]) * 0.5
)[pred_mask]
output_str = "ASSITANT: " + text_output # input_str
if save_img is not None:
output_image = save_img # input_image
else:
## no seg output
output_image = cv2.imread("./resources/no_seg_out.png")[:, :, ::-1]
return output_image, output_str
demo = gr.Interface(
inference,
inputs=[
gr.Textbox(lines=1, placeholder=None, label="Text Instruction"),
gr.Image(type="filepath", label="Input Image"),
],
outputs=[
gr.Image(type="pil", label="Segmentation Output"),
gr.Textbox(lines=1, placeholder=None, label="Text Output"),
],
title=title,
description=description,
article=article,
examples=examples,
allow_flagging="auto",
)
demo.queue()
demo.launch()
|