Spaces:
Paused
Paused
File size: 9,294 Bytes
3d9fba4 5885496 3d9fba4 5885496 c39e06d 5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 5885496 3d9fba4 968fffb 3d9fba4 5885496 3d9fba4 968fffb 3d9fba4 c39e06d 3d9fba4 c39e06d 3d9fba4 c39e06d 3d9fba4 5885496 3d9fba4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
import argparse
import os
import sys
import cv2
import glob
import numpy as np
import torch
import torch.nn.functional as F
import transformers
from transformers import AutoTokenizer, CLIPImageProcessor
from model.LISA import LISA
from model.segment_anything.utils.transforms import ResizeLongestSide
from utils.conversation import get_default_conv_template
def parse_args(args):
parser = argparse.ArgumentParser(description="LISA chat")
parser.add_argument("--version", default="xinlai/LISA-13B-llama2-v0")
parser.add_argument("--vis_save_path", default="./vis_output", type=str)
parser.add_argument(
"--precision",
default="bf16",
type=str,
choices=["fp32", "bf16", "fp16"],
help="precision for inference",
)
parser.add_argument("--image-size", default=1024, type=int, help="image size")
parser.add_argument("--model-max-length", default=512, type=int)
parser.add_argument("--lora-r", default=-1, type=int)
parser.add_argument(
"--vision-tower", default="openai/clip-vit-large-patch14", type=str
)
parser.add_argument("--local-rank", default=0, type=int, help="node rank")
parser.add_argument("--load_in_8bit", action="store_true", default=False)
parser.add_argument("--load_in_4bit", action="store_true", default=False)
return parser.parse_args(args)
def preprocess(
x,
pixel_mean=torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1),
pixel_std=torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1),
img_size=1024,
) -> torch.Tensor:
"""Normalize pixel values and pad to a square input."""
# Normalize colors
x = (x - pixel_mean) / pixel_std
# Pad
h, w = x.shape[-2:]
padh = img_size - h
padw = img_size - w
x = F.pad(x, (0, padw, 0, padh))
return x
def main(args):
args = parse_args(args)
os.makedirs(args.vis_save_path, exist_ok=True)
# Create model
tokenizer = transformers.AutoTokenizer.from_pretrained(
args.version,
cache_dir=None,
model_max_length=args.model_max_length,
padding_side="right",
use_fast=False,
)
tokenizer.pad_token = tokenizer.unk_token
num_added_tokens = tokenizer.add_tokens("[SEG]")
ret_token_idx = tokenizer("[SEG]", add_special_tokens=False).input_ids
args.seg_token_idx = ret_token_idx[0]
model = LISA(
args.local_rank,
args.seg_token_idx,
tokenizer,
args.version,
args.lora_r,
args.precision,
load_in_8bit=args.load_in_8bit,
load_in_4bit=args.load_in_4bit,
)
if os.path.exists(args.version):
model_dir = args.version
else: # hack for cached pre-trained weights
user_name, model_name = args.version.split("/")
cache_dir = "{}/.cache/huggingface/hub/models--{}--{}".format(os.environ['HOME'], user_name, model_name)
if os.path.exists(cache_dir):
model1_dir = glob.glob("{}/snapshots/*/pytorch_model-visual_model.bin".format(cache_dir))
model2_dir = glob.glob("{}/snapshots/*/pytorch_model-text_hidden_fcs.bin".format(cache_dir))
if len(model1_dir) == 0 or len(model2_dir) == 0:
raise ValueError("Pre-trained weights for visual_model or text_hidden_fcs do not exist in {}.".format(
cache_dir
))
model1_dir = ["/".join(x.split("/")[:-1]) for x in model1_dir]
model2_dir = ["/".join(x.split("/")[:-1]) for x in model2_dir]
model_dir = list(set(model1_dir).intersection(set(model2_dir)))
if len(model_dir) == 0:
raise ValueError("Pre-trained weights for visual_model or text_hidden_fcs do not exist in {}.".format(
cache_dir
))
model_dir = model_dir[0]
else:
raise ValueError("The path {} does not exists.".format(cache_dir))
weight = {}
visual_model_weight = torch.load(
os.path.join(model_dir, "pytorch_model-visual_model.bin")
)
text_hidden_fcs_weight = torch.load(
os.path.join(model_dir, "pytorch_model-text_hidden_fcs.bin")
)
weight.update(visual_model_weight)
weight.update(text_hidden_fcs_weight)
missing_keys, unexpected_keys = model.load_state_dict(weight, strict=False)
if args.precision == "bf16":
model = model.bfloat16().cuda()
elif args.precision == "fp16":
import deepspeed
model_engine = deepspeed.init_inference(
model=model,
dtype=torch.half,
replace_with_kernel_inject=True,
replace_method="auto",
)
model = model_engine.module
else:
model = model.float().cuda()
DEFAULT_IMAGE_TOKEN = "<image>"
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
DEFAULT_IM_START_TOKEN = "<im_start>"
DEFAULT_IM_END_TOKEN = "<im_end>"
image_token_len = 256
clip_image_processor = CLIPImageProcessor.from_pretrained(args.vision_tower)
transform = ResizeLongestSide(args.image_size)
while True:
conv = get_default_conv_template("vicuna").copy()
conv.messages = []
prompt = input("Please input your prompt: ")
prompt = DEFAULT_IMAGE_TOKEN + " " + prompt
replace_token = DEFAULT_IMAGE_PATCH_TOKEN * image_token_len
replace_token = DEFAULT_IM_START_TOKEN + replace_token + DEFAULT_IM_END_TOKEN
prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token)
conv.append_message(conv.roles[0], prompt)
conv.append_message(conv.roles[1], "")
prompt = conv.get_prompt()
image_path = input("Please input the image path: ")
if not os.path.exists(image_path):
print("File not found in {}".format(image_path))
continue
image = cv2.imread(image_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
original_size_list = [image.shape[:2]]
if args.precision == "bf16":
images_clip = (
clip_image_processor.preprocess(image, return_tensors="pt")[
"pixel_values"
][0]
.unsqueeze(0)
.cuda()
.bfloat16()
)
elif args.precision == "fp16":
images_clip = (
clip_image_processor.preprocess(image, return_tensors="pt")[
"pixel_values"
][0]
.unsqueeze(0)
.cuda()
.half()
)
else:
images_clip = (
clip_image_processor.preprocess(image, return_tensors="pt")[
"pixel_values"
][0]
.unsqueeze(0)
.cuda()
.float()
)
images = transform.apply_image(image)
resize_list = [images.shape[:2]]
if args.precision == "bf16":
images = (
preprocess(torch.from_numpy(images).permute(2, 0, 1).contiguous())
.unsqueeze(0)
.cuda()
.bfloat16()
)
elif args.precision == "fp16":
images = (
preprocess(torch.from_numpy(images).permute(2, 0, 1).contiguous())
.unsqueeze(0)
.cuda()
.half()
)
else:
images = (
preprocess(torch.from_numpy(images).permute(2, 0, 1).contiguous())
.unsqueeze(0)
.cuda()
.float()
)
input_ids = tokenizer(prompt).input_ids
input_ids = torch.LongTensor(input_ids).unsqueeze(0).cuda()
output_ids, pred_masks = model.evaluate(
images_clip,
images,
input_ids,
resize_list,
original_size_list,
max_new_tokens=512,
tokenizer=tokenizer,
)
text_output = tokenizer.decode(output_ids[0], skip_special_tokens=False)
text_output = (
text_output.replace(DEFAULT_IMAGE_PATCH_TOKEN, "")
.replace("\n", "")
.replace(" ", "")
)
print("text_output: ", text_output)
for i, pred_mask in enumerate(pred_masks):
if pred_mask.shape[0] == 0:
continue
pred_mask = pred_mask.detach().cpu().numpy()[0]
pred_mask = pred_mask > 0
save_path = "{}/{}_mask_{}.jpg".format(
args.vis_save_path, image_path.split("/")[-1].split(".")[0], i
)
cv2.imwrite(save_path, pred_mask * 100)
print("{} has been saved.".format(save_path))
save_path = "{}/{}_masked_img_{}.jpg".format(
args.vis_save_path, image_path.split("/")[-1].split(".")[0], i
)
save_img = image.copy()
save_img[pred_mask] = (
image * 0.5
+ pred_mask[:, :, None].astype(np.uint8) * np.array([255, 0, 0]) * 0.5
)[pred_mask]
save_img = cv2.cvtColor(save_img, cv2.COLOR_RGB2BGR)
cv2.imwrite(save_path, save_img)
print("{} has been saved.".format(save_path))
if __name__ == "__main__":
main(sys.argv[1:])
|