File size: 9,294 Bytes
3d9fba4
5885496
3d9fba4
 
5885496
c39e06d
5885496
3d9fba4
5885496
3d9fba4
5885496
 
 
 
3d9fba4
 
5885496
 
3d9fba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
968fffb
3d9fba4
 
5885496
 
 
 
 
 
 
 
 
 
 
 
3d9fba4
 
 
 
 
 
 
 
 
 
968fffb
3d9fba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c39e06d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d9fba4
 
c39e06d
3d9fba4
 
c39e06d
3d9fba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5885496
3d9fba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import argparse
import os
import sys

import cv2
import glob
import numpy as np
import torch
import torch.nn.functional as F
import transformers
from transformers import AutoTokenizer, CLIPImageProcessor

from model.LISA import LISA
from model.segment_anything.utils.transforms import ResizeLongestSide
from utils.conversation import get_default_conv_template


def parse_args(args):
    parser = argparse.ArgumentParser(description="LISA chat")
    parser.add_argument("--version", default="xinlai/LISA-13B-llama2-v0")
    parser.add_argument("--vis_save_path", default="./vis_output", type=str)
    parser.add_argument(
        "--precision",
        default="bf16",
        type=str,
        choices=["fp32", "bf16", "fp16"],
        help="precision for inference",
    )
    parser.add_argument("--image-size", default=1024, type=int, help="image size")
    parser.add_argument("--model-max-length", default=512, type=int)
    parser.add_argument("--lora-r", default=-1, type=int)
    parser.add_argument(
        "--vision-tower", default="openai/clip-vit-large-patch14", type=str
    )
    parser.add_argument("--local-rank", default=0, type=int, help="node rank")
    parser.add_argument("--load_in_8bit", action="store_true", default=False)
    parser.add_argument("--load_in_4bit", action="store_true", default=False)
    return parser.parse_args(args)


def preprocess(
    x,
    pixel_mean=torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1),
    pixel_std=torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1),
    img_size=1024,
) -> torch.Tensor:
    """Normalize pixel values and pad to a square input."""
    # Normalize colors
    x = (x - pixel_mean) / pixel_std
    # Pad
    h, w = x.shape[-2:]
    padh = img_size - h
    padw = img_size - w
    x = F.pad(x, (0, padw, 0, padh))
    return x


def main(args):
    args = parse_args(args)
    os.makedirs(args.vis_save_path, exist_ok=True)

    # Create model
    tokenizer = transformers.AutoTokenizer.from_pretrained(
        args.version,
        cache_dir=None,
        model_max_length=args.model_max_length,
        padding_side="right",
        use_fast=False,
    )
    tokenizer.pad_token = tokenizer.unk_token
    num_added_tokens = tokenizer.add_tokens("[SEG]")
    ret_token_idx = tokenizer("[SEG]", add_special_tokens=False).input_ids
    args.seg_token_idx = ret_token_idx[0]

    model = LISA(
        args.local_rank,
        args.seg_token_idx,
        tokenizer,
        args.version,
        args.lora_r,
        args.precision,
        load_in_8bit=args.load_in_8bit,
        load_in_4bit=args.load_in_4bit,
    )

    if os.path.exists(args.version):
        model_dir = args.version
    else: # hack for cached pre-trained weights
        user_name, model_name = args.version.split("/")
        cache_dir = "{}/.cache/huggingface/hub/models--{}--{}".format(os.environ['HOME'], user_name, model_name)
        if os.path.exists(cache_dir):
            model1_dir = glob.glob("{}/snapshots/*/pytorch_model-visual_model.bin".format(cache_dir))
            model2_dir = glob.glob("{}/snapshots/*/pytorch_model-text_hidden_fcs.bin".format(cache_dir))
            if len(model1_dir) == 0 or len(model2_dir) == 0:
                raise ValueError("Pre-trained weights for visual_model or text_hidden_fcs do not exist in {}.".format(
                    cache_dir
                ))
            model1_dir = ["/".join(x.split("/")[:-1]) for x in model1_dir]
            model2_dir = ["/".join(x.split("/")[:-1]) for x in model2_dir]
            model_dir = list(set(model1_dir).intersection(set(model2_dir)))
            if len(model_dir) == 0:
                raise ValueError("Pre-trained weights for visual_model or text_hidden_fcs do not exist in {}.".format(
                    cache_dir
                ))
            model_dir = model_dir[0]
        else:
            raise ValueError("The path {} does not exists.".format(cache_dir))

    weight = {}
    visual_model_weight = torch.load(
        os.path.join(model_dir, "pytorch_model-visual_model.bin")
    )
    text_hidden_fcs_weight = torch.load(
        os.path.join(model_dir, "pytorch_model-text_hidden_fcs.bin")
    )
    weight.update(visual_model_weight)
    weight.update(text_hidden_fcs_weight)
    missing_keys, unexpected_keys = model.load_state_dict(weight, strict=False)

    if args.precision == "bf16":
        model = model.bfloat16().cuda()
    elif args.precision == "fp16":
        import deepspeed

        model_engine = deepspeed.init_inference(
            model=model,
            dtype=torch.half,
            replace_with_kernel_inject=True,
            replace_method="auto",
        )
        model = model_engine.module
    else:
        model = model.float().cuda()

    DEFAULT_IMAGE_TOKEN = "<image>"
    DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
    DEFAULT_IM_START_TOKEN = "<im_start>"
    DEFAULT_IM_END_TOKEN = "<im_end>"
    image_token_len = 256

    clip_image_processor = CLIPImageProcessor.from_pretrained(args.vision_tower)
    transform = ResizeLongestSide(args.image_size)

    while True:
        conv = get_default_conv_template("vicuna").copy()
        conv.messages = []

        prompt = input("Please input your prompt: ")
        prompt = DEFAULT_IMAGE_TOKEN + " " + prompt
        replace_token = DEFAULT_IMAGE_PATCH_TOKEN * image_token_len
        replace_token = DEFAULT_IM_START_TOKEN + replace_token + DEFAULT_IM_END_TOKEN
        prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token)

        conv.append_message(conv.roles[0], prompt)
        conv.append_message(conv.roles[1], "")
        prompt = conv.get_prompt()

        image_path = input("Please input the image path: ")
        if not os.path.exists(image_path):
            print("File not found in {}".format(image_path))
            continue

        image = cv2.imread(image_path)
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        original_size_list = [image.shape[:2]]
        if args.precision == "bf16":
            images_clip = (
                clip_image_processor.preprocess(image, return_tensors="pt")[
                    "pixel_values"
                ][0]
                .unsqueeze(0)
                .cuda()
                .bfloat16()
            )
        elif args.precision == "fp16":
            images_clip = (
                clip_image_processor.preprocess(image, return_tensors="pt")[
                    "pixel_values"
                ][0]
                .unsqueeze(0)
                .cuda()
                .half()
            )
        else:
            images_clip = (
                clip_image_processor.preprocess(image, return_tensors="pt")[
                    "pixel_values"
                ][0]
                .unsqueeze(0)
                .cuda()
                .float()
            )
        images = transform.apply_image(image)
        resize_list = [images.shape[:2]]
        if args.precision == "bf16":
            images = (
                preprocess(torch.from_numpy(images).permute(2, 0, 1).contiguous())
                .unsqueeze(0)
                .cuda()
                .bfloat16()
            )
        elif args.precision == "fp16":
            images = (
                preprocess(torch.from_numpy(images).permute(2, 0, 1).contiguous())
                .unsqueeze(0)
                .cuda()
                .half()
            )
        else:
            images = (
                preprocess(torch.from_numpy(images).permute(2, 0, 1).contiguous())
                .unsqueeze(0)
                .cuda()
                .float()
            )

        input_ids = tokenizer(prompt).input_ids
        input_ids = torch.LongTensor(input_ids).unsqueeze(0).cuda()
        output_ids, pred_masks = model.evaluate(
            images_clip,
            images,
            input_ids,
            resize_list,
            original_size_list,
            max_new_tokens=512,
            tokenizer=tokenizer,
        )
        text_output = tokenizer.decode(output_ids[0], skip_special_tokens=False)
        text_output = (
            text_output.replace(DEFAULT_IMAGE_PATCH_TOKEN, "")
            .replace("\n", "")
            .replace("  ", "")
        )

        print("text_output: ", text_output)
        for i, pred_mask in enumerate(pred_masks):
            if pred_mask.shape[0] == 0:
                continue

            pred_mask = pred_mask.detach().cpu().numpy()[0]
            pred_mask = pred_mask > 0

            save_path = "{}/{}_mask_{}.jpg".format(
                args.vis_save_path, image_path.split("/")[-1].split(".")[0], i
            )
            cv2.imwrite(save_path, pred_mask * 100)
            print("{} has been saved.".format(save_path))

            save_path = "{}/{}_masked_img_{}.jpg".format(
                args.vis_save_path, image_path.split("/")[-1].split(".")[0], i
            )
            save_img = image.copy()
            save_img[pred_mask] = (
                image * 0.5
                + pred_mask[:, :, None].astype(np.uint8) * np.array([255, 0, 0]) * 0.5
            )[pred_mask]
            save_img = cv2.cvtColor(save_img, cv2.COLOR_RGB2BGR)
            cv2.imwrite(save_path, save_img)
            print("{} has been saved.".format(save_path))


if __name__ == "__main__":
    main(sys.argv[1:])