Spaces:
Paused
Paused
alessandro trinca tornidor
commited on
Commit
·
1186076
1
Parent(s):
8facf64
[refactor] return the inference function to inject the model
Browse files
app.py
CHANGED
@@ -196,138 +196,138 @@ def get_model(args_to_parse):
|
|
196 |
return _model, _clip_image_processor, _tokenizer, _transform
|
197 |
|
198 |
|
199 |
-
|
200 |
-
model, clip_image_processor, tokenizer, transform = get_model(
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
link_rel=None,
|
230 |
-
)
|
231 |
-
|
232 |
-
print("input_str: ", input_str, "input_image: ", input_image)
|
233 |
-
|
234 |
-
## input valid check
|
235 |
-
if not re.match(r"^[A-Za-z ,.!?\'\"]+$", input_str) or len(input_str) < 1:
|
236 |
-
output_str = "[Error] Invalid input: ", input_str
|
237 |
-
# output_image = np.zeros((128, 128, 3))
|
238 |
-
## error happened
|
239 |
-
output_image = cv2.imread("./resources/error_happened.png")[:, :, ::-1]
|
240 |
-
return output_image, output_str
|
241 |
-
|
242 |
-
# Model Inference
|
243 |
-
conv = conversation_lib.conv_templates[args.conv_type].copy()
|
244 |
-
conv.messages = []
|
245 |
-
|
246 |
-
prompt = input_str
|
247 |
-
prompt = DEFAULT_IMAGE_TOKEN + "\n" + prompt
|
248 |
-
if args.use_mm_start_end:
|
249 |
-
replace_token = (
|
250 |
-
DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN
|
251 |
)
|
252 |
-
prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token)
|
253 |
-
|
254 |
-
conv.append_message(conv.roles[0], prompt)
|
255 |
-
conv.append_message(conv.roles[1], "")
|
256 |
-
prompt = conv.get_prompt()
|
257 |
-
|
258 |
-
image_np = cv2.imread(input_image)
|
259 |
-
image_np = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
|
260 |
-
original_size_list = [image_np.shape[:2]]
|
261 |
-
|
262 |
-
image_clip = (
|
263 |
-
clip_image_processor.preprocess(image_np, return_tensors="pt")[
|
264 |
-
"pixel_values"
|
265 |
-
][0]
|
266 |
-
.unsqueeze(0)
|
267 |
-
.cuda()
|
268 |
-
)
|
269 |
-
if args.precision == "bf16":
|
270 |
-
image_clip = image_clip.bfloat16()
|
271 |
-
elif args.precision == "fp16":
|
272 |
-
image_clip = image_clip.half()
|
273 |
-
else:
|
274 |
-
image_clip = image_clip.float()
|
275 |
-
|
276 |
-
image = transform.apply_image(image_np)
|
277 |
-
resize_list = [image.shape[:2]]
|
278 |
-
|
279 |
-
image = (
|
280 |
-
preprocess(torch.from_numpy(image).permute(2, 0, 1).contiguous())
|
281 |
-
.unsqueeze(0)
|
282 |
-
.cuda()
|
283 |
-
)
|
284 |
-
if args.precision == "bf16":
|
285 |
-
image = image.bfloat16()
|
286 |
-
elif args.precision == "fp16":
|
287 |
-
image = image.half()
|
288 |
-
else:
|
289 |
-
image = image.float()
|
290 |
-
|
291 |
-
input_ids = tokenizer_image_token(prompt, tokenizer, return_tensors="pt")
|
292 |
-
input_ids = input_ids.unsqueeze(0).cuda()
|
293 |
-
|
294 |
-
output_ids, pred_masks = model.evaluate(
|
295 |
-
image_clip,
|
296 |
-
image,
|
297 |
-
input_ids,
|
298 |
-
resize_list,
|
299 |
-
original_size_list,
|
300 |
-
max_new_tokens=512,
|
301 |
-
tokenizer=tokenizer,
|
302 |
-
)
|
303 |
-
output_ids = output_ids[0][output_ids[0] != IMAGE_TOKEN_INDEX]
|
304 |
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
331 |
|
332 |
|
333 |
def server_runner(
|
@@ -361,8 +361,10 @@ def server_runner(
|
|
361 |
|
362 |
|
363 |
if __name__ == '__main__':
|
|
|
|
|
364 |
server_runner(
|
365 |
-
|
366 |
debug=True,
|
367 |
server_name="0.0.0.0"
|
368 |
)
|
|
|
196 |
return _model, _clip_image_processor, _tokenizer, _transform
|
197 |
|
198 |
|
199 |
+
def get_inference_model_by_args(args_to_parse):
|
200 |
+
model, clip_image_processor, tokenizer, transform = get_model(args_to_parse)
|
201 |
+
|
202 |
+
## to be implemented
|
203 |
+
def inference(input_str, input_image):
|
204 |
+
## filter out special chars
|
205 |
+
|
206 |
+
input_str = nh3.clean(
|
207 |
+
input_str,
|
208 |
+
tags={
|
209 |
+
"a",
|
210 |
+
"abbr",
|
211 |
+
"acronym",
|
212 |
+
"b",
|
213 |
+
"blockquote",
|
214 |
+
"code",
|
215 |
+
"em",
|
216 |
+
"i",
|
217 |
+
"li",
|
218 |
+
"ol",
|
219 |
+
"strong",
|
220 |
+
"ul",
|
221 |
+
},
|
222 |
+
attributes={
|
223 |
+
"a": {"href", "title"},
|
224 |
+
"abbr": {"title"},
|
225 |
+
"acronym": {"title"},
|
226 |
+
},
|
227 |
+
url_schemes={"http", "https", "mailto"},
|
228 |
+
link_rel=None,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
229 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
230 |
|
231 |
+
print("input_str: ", input_str, "input_image: ", input_image)
|
232 |
+
|
233 |
+
## input valid check
|
234 |
+
if not re.match(r"^[A-Za-z ,.!?\'\"]+$", input_str) or len(input_str) < 1:
|
235 |
+
output_str = "[Error] Invalid input: ", input_str
|
236 |
+
# output_image = np.zeros((128, 128, 3))
|
237 |
+
## error happened
|
238 |
+
output_image = cv2.imread("./resources/error_happened.png")[:, :, ::-1]
|
239 |
+
return output_image, output_str
|
240 |
+
|
241 |
+
# Model Inference
|
242 |
+
conv = conversation_lib.conv_templates[args.conv_type].copy()
|
243 |
+
conv.messages = []
|
244 |
+
|
245 |
+
prompt = input_str
|
246 |
+
prompt = DEFAULT_IMAGE_TOKEN + "\n" + prompt
|
247 |
+
if args.use_mm_start_end:
|
248 |
+
replace_token = (
|
249 |
+
DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN
|
250 |
+
)
|
251 |
+
prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token)
|
252 |
+
|
253 |
+
conv.append_message(conv.roles[0], prompt)
|
254 |
+
conv.append_message(conv.roles[1], "")
|
255 |
+
prompt = conv.get_prompt()
|
256 |
+
|
257 |
+
image_np = cv2.imread(input_image)
|
258 |
+
image_np = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
|
259 |
+
original_size_list = [image_np.shape[:2]]
|
260 |
+
|
261 |
+
image_clip = (
|
262 |
+
clip_image_processor.preprocess(image_np, return_tensors="pt")[
|
263 |
+
"pixel_values"
|
264 |
+
][0]
|
265 |
+
.unsqueeze(0)
|
266 |
+
.cuda()
|
267 |
+
)
|
268 |
+
if args.precision == "bf16":
|
269 |
+
image_clip = image_clip.bfloat16()
|
270 |
+
elif args.precision == "fp16":
|
271 |
+
image_clip = image_clip.half()
|
272 |
+
else:
|
273 |
+
image_clip = image_clip.float()
|
274 |
+
|
275 |
+
image = transform.apply_image(image_np)
|
276 |
+
resize_list = [image.shape[:2]]
|
277 |
+
|
278 |
+
image = (
|
279 |
+
preprocess(torch.from_numpy(image).permute(2, 0, 1).contiguous())
|
280 |
+
.unsqueeze(0)
|
281 |
+
.cuda()
|
282 |
+
)
|
283 |
+
if args.precision == "bf16":
|
284 |
+
image = image.bfloat16()
|
285 |
+
elif args.precision == "fp16":
|
286 |
+
image = image.half()
|
287 |
+
else:
|
288 |
+
image = image.float()
|
289 |
+
|
290 |
+
input_ids = tokenizer_image_token(prompt, tokenizer, return_tensors="pt")
|
291 |
+
input_ids = input_ids.unsqueeze(0).cuda()
|
292 |
+
|
293 |
+
output_ids, pred_masks = model.evaluate(
|
294 |
+
image_clip,
|
295 |
+
image,
|
296 |
+
input_ids,
|
297 |
+
resize_list,
|
298 |
+
original_size_list,
|
299 |
+
max_new_tokens=512,
|
300 |
+
tokenizer=tokenizer,
|
301 |
+
)
|
302 |
+
output_ids = output_ids[0][output_ids[0] != IMAGE_TOKEN_INDEX]
|
303 |
+
|
304 |
+
text_output = tokenizer.decode(output_ids, skip_special_tokens=False)
|
305 |
+
text_output = text_output.replace("\n", "").replace(" ", " ")
|
306 |
+
text_output = text_output.split("ASSISTANT: ")[-1]
|
307 |
+
|
308 |
+
print("text_output: ", text_output)
|
309 |
+
save_img = None
|
310 |
+
for i, pred_mask in enumerate(pred_masks):
|
311 |
+
if pred_mask.shape[0] == 0:
|
312 |
+
continue
|
313 |
+
|
314 |
+
pred_mask = pred_mask.detach().cpu().numpy()[0]
|
315 |
+
pred_mask = pred_mask > 0
|
316 |
+
|
317 |
+
save_img = image_np.copy()
|
318 |
+
save_img[pred_mask] = (
|
319 |
+
image_np * 0.5
|
320 |
+
+ pred_mask[:, :, None].astype(np.uint8) * np.array([255, 0, 0]) * 0.5
|
321 |
+
)[pred_mask]
|
322 |
+
|
323 |
+
output_str = "ASSITANT: " + text_output # input_str
|
324 |
+
if save_img is not None:
|
325 |
+
output_image = save_img # input_image
|
326 |
+
else:
|
327 |
+
## no seg output
|
328 |
+
output_image = cv2.imread("./resources/no_seg_out.png")[:, :, ::-1]
|
329 |
+
return output_image, output_str
|
330 |
+
return inference
|
331 |
|
332 |
|
333 |
def server_runner(
|
|
|
361 |
|
362 |
|
363 |
if __name__ == '__main__':
|
364 |
+
args = parse_args(sys.argv[1:])
|
365 |
+
inference_fn = get_inference_model_by_args(args)
|
366 |
server_runner(
|
367 |
+
inference_fn,
|
368 |
debug=True,
|
369 |
server_name="0.0.0.0"
|
370 |
)
|