Spaces:
Paused
Paused
alessandro trinca tornidor
commited on
Commit
·
951f1c4
1
Parent(s):
2640499
[feat] add optional embedding_key argument to LISAForCausalLM.evaluate() method
Browse files- lisa_on_cuda/LISA.py +78 -45
- lisa_on_cuda/utils/app_helpers.py +33 -5
- scripts/baremetal_entrypoint.sh +41 -0
- scripts/create_folders_and_variables_if_not_exists.py +51 -0
- scripts/entrypoint.sh +18 -5
lisa_on_cuda/LISA.py
CHANGED
@@ -7,13 +7,15 @@ import torch.nn.functional as F
|
|
7 |
from .llava.model.language_model.llava_llama import (LlavaLlamaForCausalLM, LlavaLlamaModel)
|
8 |
from .segment_anything import build_sam_vit_h
|
9 |
|
|
|
|
|
10 |
|
11 |
def dice_loss(
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
):
|
18 |
"""
|
19 |
Compute the DICE loss, similar to generalized IOU for masks
|
@@ -35,9 +37,9 @@ def dice_loss(
|
|
35 |
|
36 |
|
37 |
def sigmoid_ce_loss(
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
):
|
42 |
"""
|
43 |
Args:
|
@@ -56,9 +58,9 @@ def sigmoid_ce_loss(
|
|
56 |
|
57 |
class LisaMetaModel:
|
58 |
def __init__(
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
):
|
63 |
super(LisaMetaModel, self).__init__(config)
|
64 |
|
@@ -98,9 +100,9 @@ class LisaMetaModel:
|
|
98 |
|
99 |
class LisaModel(LisaMetaModel, LlavaLlamaModel):
|
100 |
def __init__(
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
):
|
105 |
super(LisaModel, self).__init__(config, **kwargs)
|
106 |
|
@@ -117,9 +119,9 @@ class LisaModel(LisaMetaModel, LlavaLlamaModel):
|
|
117 |
|
118 |
class LISAForCausalLM(LlavaLlamaForCausalLM):
|
119 |
def __init__(
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
):
|
124 |
if not hasattr(config, "train_mask_decoder"):
|
125 |
config.mm_use_im_start_end = kwargs.pop("use_mm_start_end", True)
|
@@ -131,7 +133,7 @@ class LISAForCausalLM(LlavaLlamaForCausalLM):
|
|
131 |
self.bce_loss_weight = kwargs.pop("bce_loss_weight", None)
|
132 |
else:
|
133 |
config.mm_vision_tower = config.vision_tower
|
134 |
-
|
135 |
self.seg_token_idx = kwargs.pop("seg_token_idx")
|
136 |
|
137 |
super().__init__(config)
|
@@ -162,18 +164,18 @@ class LISAForCausalLM(LlavaLlamaForCausalLM):
|
|
162 |
return self.model_forward(**kwargs)
|
163 |
|
164 |
def model_forward(
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
):
|
178 |
image_embeddings = self.get_visual_embs(images)
|
179 |
batch_size = image_embeddings.shape[0]
|
@@ -309,17 +311,17 @@ class LISAForCausalLM(LlavaLlamaForCausalLM):
|
|
309 |
pred_mask = pred_masks[batch_idx]
|
310 |
|
311 |
assert (
|
312 |
-
|
313 |
), "gt_mask.shape: {}, pred_mask.shape: {}".format(
|
314 |
gt_mask.shape, pred_mask.shape
|
315 |
)
|
316 |
mask_bce_loss += (
|
317 |
-
|
318 |
-
|
319 |
)
|
320 |
mask_dice_loss += (
|
321 |
-
|
322 |
-
|
323 |
)
|
324 |
num_masks += gt_mask.shape[0]
|
325 |
|
@@ -338,16 +340,22 @@ class LISAForCausalLM(LlavaLlamaForCausalLM):
|
|
338 |
}
|
339 |
|
340 |
def evaluate(
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
|
|
|
|
349 |
):
|
350 |
with torch.no_grad():
|
|
|
|
|
|
|
|
|
351 |
outputs = self.generate(
|
352 |
images=images_clip,
|
353 |
input_ids=input_ids,
|
@@ -356,11 +364,13 @@ class LISAForCausalLM(LlavaLlamaForCausalLM):
|
|
356 |
output_hidden_states=True,
|
357 |
return_dict_in_generate=True,
|
358 |
)
|
|
|
359 |
output_hidden_states = outputs.hidden_states[-1]
|
360 |
output_ids = outputs.sequences
|
361 |
|
362 |
seg_token_mask = output_ids[:, 1:] == self.seg_token_idx
|
363 |
# hack for IMAGE_TOKEN_INDEX (we suppose that there is only one image, and it is in the front)
|
|
|
364 |
seg_token_mask = torch.cat(
|
365 |
[
|
366 |
torch.zeros((seg_token_mask.shape[0], 255)).bool().cuda(),
|
@@ -368,20 +378,25 @@ class LISAForCausalLM(LlavaLlamaForCausalLM):
|
|
368 |
],
|
369 |
dim=1,
|
370 |
)
|
|
|
371 |
|
372 |
hidden_states = []
|
373 |
|
374 |
assert len(self.model.text_hidden_fcs) == 1
|
375 |
hidden_states.append(self.model.text_hidden_fcs[0](output_hidden_states))
|
376 |
|
|
|
377 |
last_hidden_state = torch.stack(hidden_states, dim=-1).sum(dim=-1)
|
|
|
378 |
pred_embeddings = last_hidden_state[seg_token_mask]
|
379 |
|
380 |
seg_token_counts = seg_token_mask.int().sum(-1) # [bs, ]
|
381 |
seg_token_offset = seg_token_counts.cumsum(-1)
|
|
|
382 |
seg_token_offset = torch.cat(
|
383 |
[torch.zeros(1).long().cuda(), seg_token_offset], dim=0
|
384 |
)
|
|
|
385 |
|
386 |
pred_embeddings_ = []
|
387 |
for i in range(len(seg_token_offset) - 1):
|
@@ -389,11 +404,25 @@ class LISAForCausalLM(LlavaLlamaForCausalLM):
|
|
389 |
pred_embeddings_.append(pred_embeddings[start_i:end_i])
|
390 |
pred_embeddings = pred_embeddings_
|
391 |
|
392 |
-
image_embeddings
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
393 |
|
394 |
multimask_output = False
|
395 |
pred_masks = []
|
396 |
for i in range(len(pred_embeddings)):
|
|
|
397 |
(
|
398 |
sparse_embeddings,
|
399 |
dense_embeddings,
|
@@ -403,8 +432,9 @@ class LISAForCausalLM(LlavaLlamaForCausalLM):
|
|
403 |
masks=None,
|
404 |
text_embeds=pred_embeddings[i].unsqueeze(1),
|
405 |
)
|
406 |
-
|
407 |
sparse_embeddings = sparse_embeddings.to(pred_embeddings[i].dtype)
|
|
|
408 |
low_res_masks, iou_predictions = self.model.visual_model.mask_decoder(
|
409 |
image_embeddings=image_embeddings[i].unsqueeze(0),
|
410 |
image_pe=self.model.visual_model.prompt_encoder.get_dense_pe(),
|
@@ -412,11 +442,14 @@ class LISAForCausalLM(LlavaLlamaForCausalLM):
|
|
412 |
dense_prompt_embeddings=dense_embeddings,
|
413 |
multimask_output=multimask_output,
|
414 |
)
|
|
|
415 |
pred_mask = self.model.visual_model.postprocess_masks(
|
416 |
low_res_masks,
|
417 |
input_size=resize_list[i],
|
418 |
original_size=original_size_list[i],
|
419 |
)
|
|
|
420 |
pred_masks.append(pred_mask[:, 0])
|
421 |
|
|
|
422 |
return output_ids, pred_masks
|
|
|
7 |
from .llava.model.language_model.llava_llama import (LlavaLlamaForCausalLM, LlavaLlamaModel)
|
8 |
from .segment_anything import build_sam_vit_h
|
9 |
|
10 |
+
embedding_dict = {}
|
11 |
+
|
12 |
|
13 |
def dice_loss(
|
14 |
+
inputs: torch.Tensor,
|
15 |
+
targets: torch.Tensor,
|
16 |
+
num_masks: float,
|
17 |
+
scale=1000, # 100000.0,
|
18 |
+
eps=1e-6,
|
19 |
):
|
20 |
"""
|
21 |
Compute the DICE loss, similar to generalized IOU for masks
|
|
|
37 |
|
38 |
|
39 |
def sigmoid_ce_loss(
|
40 |
+
inputs: torch.Tensor,
|
41 |
+
targets: torch.Tensor,
|
42 |
+
num_masks: float,
|
43 |
):
|
44 |
"""
|
45 |
Args:
|
|
|
58 |
|
59 |
class LisaMetaModel:
|
60 |
def __init__(
|
61 |
+
self,
|
62 |
+
config,
|
63 |
+
**kwargs,
|
64 |
):
|
65 |
super(LisaMetaModel, self).__init__(config)
|
66 |
|
|
|
100 |
|
101 |
class LisaModel(LisaMetaModel, LlavaLlamaModel):
|
102 |
def __init__(
|
103 |
+
self,
|
104 |
+
config,
|
105 |
+
**kwargs,
|
106 |
):
|
107 |
super(LisaModel, self).__init__(config, **kwargs)
|
108 |
|
|
|
119 |
|
120 |
class LISAForCausalLM(LlavaLlamaForCausalLM):
|
121 |
def __init__(
|
122 |
+
self,
|
123 |
+
config,
|
124 |
+
**kwargs,
|
125 |
):
|
126 |
if not hasattr(config, "train_mask_decoder"):
|
127 |
config.mm_use_im_start_end = kwargs.pop("use_mm_start_end", True)
|
|
|
133 |
self.bce_loss_weight = kwargs.pop("bce_loss_weight", None)
|
134 |
else:
|
135 |
config.mm_vision_tower = config.vision_tower
|
136 |
+
|
137 |
self.seg_token_idx = kwargs.pop("seg_token_idx")
|
138 |
|
139 |
super().__init__(config)
|
|
|
164 |
return self.model_forward(**kwargs)
|
165 |
|
166 |
def model_forward(
|
167 |
+
self,
|
168 |
+
images: torch.FloatTensor,
|
169 |
+
images_clip: torch.FloatTensor,
|
170 |
+
input_ids: torch.LongTensor,
|
171 |
+
labels: torch.LongTensor,
|
172 |
+
attention_masks: torch.LongTensor,
|
173 |
+
offset: torch.LongTensor,
|
174 |
+
masks_list: List[torch.FloatTensor],
|
175 |
+
label_list: List[torch.Tensor],
|
176 |
+
resize_list: List[tuple],
|
177 |
+
inference: bool = False,
|
178 |
+
**kwargs,
|
179 |
):
|
180 |
image_embeddings = self.get_visual_embs(images)
|
181 |
batch_size = image_embeddings.shape[0]
|
|
|
311 |
pred_mask = pred_masks[batch_idx]
|
312 |
|
313 |
assert (
|
314 |
+
gt_mask.shape[0] == pred_mask.shape[0]
|
315 |
), "gt_mask.shape: {}, pred_mask.shape: {}".format(
|
316 |
gt_mask.shape, pred_mask.shape
|
317 |
)
|
318 |
mask_bce_loss += (
|
319 |
+
sigmoid_ce_loss(pred_mask, gt_mask, num_masks=gt_mask.shape[0])
|
320 |
+
* gt_mask.shape[0]
|
321 |
)
|
322 |
mask_dice_loss += (
|
323 |
+
dice_loss(pred_mask, gt_mask, num_masks=gt_mask.shape[0])
|
324 |
+
* gt_mask.shape[0]
|
325 |
)
|
326 |
num_masks += gt_mask.shape[0]
|
327 |
|
|
|
340 |
}
|
341 |
|
342 |
def evaluate(
|
343 |
+
self,
|
344 |
+
images_clip,
|
345 |
+
images,
|
346 |
+
input_ids,
|
347 |
+
resize_list,
|
348 |
+
original_size_list,
|
349 |
+
max_new_tokens=32,
|
350 |
+
tokenizer=None,
|
351 |
+
model_logger=None,
|
352 |
+
embedding_key=None
|
353 |
):
|
354 |
with torch.no_grad():
|
355 |
+
if model_logger is None:
|
356 |
+
import logging
|
357 |
+
model_logger = logging
|
358 |
+
model_logger.debug("start output generation...")
|
359 |
outputs = self.generate(
|
360 |
images=images_clip,
|
361 |
input_ids=input_ids,
|
|
|
364 |
output_hidden_states=True,
|
365 |
return_dict_in_generate=True,
|
366 |
)
|
367 |
+
model_logger.debug("done output generation...")
|
368 |
output_hidden_states = outputs.hidden_states[-1]
|
369 |
output_ids = outputs.sequences
|
370 |
|
371 |
seg_token_mask = output_ids[:, 1:] == self.seg_token_idx
|
372 |
# hack for IMAGE_TOKEN_INDEX (we suppose that there is only one image, and it is in the front)
|
373 |
+
model_logger.debug(f"start torch.cat to seg_token_mask...")
|
374 |
seg_token_mask = torch.cat(
|
375 |
[
|
376 |
torch.zeros((seg_token_mask.shape[0], 255)).bool().cuda(),
|
|
|
378 |
],
|
379 |
dim=1,
|
380 |
)
|
381 |
+
model_logger.debug("done torch.cat to seg_token_mask...")
|
382 |
|
383 |
hidden_states = []
|
384 |
|
385 |
assert len(self.model.text_hidden_fcs) == 1
|
386 |
hidden_states.append(self.model.text_hidden_fcs[0](output_hidden_states))
|
387 |
|
388 |
+
model_logger.debug("start torch.stack to last_hidden_state...")
|
389 |
last_hidden_state = torch.stack(hidden_states, dim=-1).sum(dim=-1)
|
390 |
+
model_logger.debug("done torch.stack to last_hidden_state...")
|
391 |
pred_embeddings = last_hidden_state[seg_token_mask]
|
392 |
|
393 |
seg_token_counts = seg_token_mask.int().sum(-1) # [bs, ]
|
394 |
seg_token_offset = seg_token_counts.cumsum(-1)
|
395 |
+
model_logger.debug(f"start torch.cat to seg_token_offset...")
|
396 |
seg_token_offset = torch.cat(
|
397 |
[torch.zeros(1).long().cuda(), seg_token_offset], dim=0
|
398 |
)
|
399 |
+
model_logger.debug("done torch.cat to seg_token_offset...")
|
400 |
|
401 |
pred_embeddings_ = []
|
402 |
for i in range(len(seg_token_offset) - 1):
|
|
|
404 |
pred_embeddings_.append(pred_embeddings[start_i:end_i])
|
405 |
pred_embeddings = pred_embeddings_
|
406 |
|
407 |
+
model_logger.debug(f"start get_visual_embs to image_embeddings with embedding_key {embedding_key}.")
|
408 |
+
|
409 |
+
if embedding_key is None:
|
410 |
+
image_embeddings = self.get_visual_embs(images)
|
411 |
+
else:
|
412 |
+
try:
|
413 |
+
image_embeddings = embedding_dict[embedding_key]
|
414 |
+
except KeyError:
|
415 |
+
model_logger.debug(f"embedding_key {embedding_key} not in embedding_dict, creating embedding now!")
|
416 |
+
image_embeddings = self.get_visual_embs(images)
|
417 |
+
embedding_dict[embedding_key] = image_embeddings
|
418 |
+
model_logger.debug(f"image embedding added in embedding_dict with embedding_key {embedding_key}!")
|
419 |
+
|
420 |
+
model_logger.debug("done get_visual_embs to image_embeddings...")
|
421 |
|
422 |
multimask_output = False
|
423 |
pred_masks = []
|
424 |
for i in range(len(pred_embeddings)):
|
425 |
+
model_logger.debug(f"start ({i}nth time) visual_model.prompt_encoder to sparse/dense")
|
426 |
(
|
427 |
sparse_embeddings,
|
428 |
dense_embeddings,
|
|
|
432 |
masks=None,
|
433 |
text_embeds=pred_embeddings[i].unsqueeze(1),
|
434 |
)
|
435 |
+
model_logger.debug(f"done ({i}nth) visual_model.prompt_encoder to sparse/dense, start sparse2sparse")
|
436 |
sparse_embeddings = sparse_embeddings.to(pred_embeddings[i].dtype)
|
437 |
+
model_logger.debug(f"done ({i}nth) sparse2sparse, start visual_model.mask_decoder")
|
438 |
low_res_masks, iou_predictions = self.model.visual_model.mask_decoder(
|
439 |
image_embeddings=image_embeddings[i].unsqueeze(0),
|
440 |
image_pe=self.model.visual_model.prompt_encoder.get_dense_pe(),
|
|
|
442 |
dense_prompt_embeddings=dense_embeddings,
|
443 |
multimask_output=multimask_output,
|
444 |
)
|
445 |
+
model_logger.debug(f"done ({i}nth) visual_model.mask_decoder, start postprocess_masks")
|
446 |
pred_mask = self.model.visual_model.postprocess_masks(
|
447 |
low_res_masks,
|
448 |
input_size=resize_list[i],
|
449 |
original_size=original_size_list[i],
|
450 |
)
|
451 |
+
model_logger.debug(f"done ({i}nth) postprocess_masks")
|
452 |
pred_masks.append(pred_mask[:, 0])
|
453 |
|
454 |
+
model_logger.debug(f"env evaluate! ")
|
455 |
return output_ids, pred_masks
|
lisa_on_cuda/utils/app_helpers.py
CHANGED
@@ -211,8 +211,12 @@ def get_inference_model_by_args(args_to_parse):
|
|
211 |
no_seg_out = placeholders["no_seg_out"]
|
212 |
|
213 |
@session_logger.set_uuid_logging
|
214 |
-
def inference(
|
215 |
-
|
|
|
|
|
|
|
|
|
216 |
if internal_logger is None:
|
217 |
internal_logger = app_logger
|
218 |
|
@@ -255,7 +259,7 @@ def get_inference_model_by_args(args_to_parse):
|
|
255 |
image_np = cv2.imread(input_image)
|
256 |
image_np = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
|
257 |
original_size_list = [image_np.shape[:2]]
|
258 |
-
|
259 |
image_clip = (
|
260 |
clip_image_processor.preprocess(image_np, return_tensors="pt")[
|
261 |
"pixel_values"
|
@@ -263,24 +267,27 @@ def get_inference_model_by_args(args_to_parse):
|
|
263 |
.unsqueeze(0)
|
264 |
.cuda()
|
265 |
)
|
|
|
266 |
internal_logger.info(f"image_clip type: {type(image_clip)}.")
|
267 |
image_clip = set_image_precision_by_args(image_clip, args_to_parse.precision)
|
268 |
|
269 |
image = transform.apply_image(image_np)
|
270 |
resize_list = [image.shape[:2]]
|
271 |
|
|
|
272 |
image = (
|
273 |
preprocess(torch.from_numpy(image).permute(2, 0, 1).contiguous())
|
274 |
.unsqueeze(0)
|
275 |
.cuda()
|
276 |
)
|
277 |
-
internal_logger.info(f"image_clip type: {type(image_clip)}.")
|
278 |
image = set_image_precision_by_args(image, args_to_parse.precision)
|
279 |
|
280 |
input_ids = tokenizer_image_token(prompt, tokenizer, return_tensors="pt")
|
281 |
input_ids = input_ids.unsqueeze(0).cuda()
|
282 |
|
283 |
-
|
|
|
284 |
output_ids, pred_masks = model.evaluate(
|
285 |
image_clip,
|
286 |
image,
|
@@ -289,6 +296,8 @@ def get_inference_model_by_args(args_to_parse):
|
|
289 |
original_size_list,
|
290 |
max_new_tokens=512,
|
291 |
tokenizer=tokenizer,
|
|
|
|
|
292 |
)
|
293 |
internal_logger.info("model evaluation done, start token decoding...")
|
294 |
output_ids = output_ids[0][output_ids[0] != utils.IMAGE_TOKEN_INDEX]
|
@@ -347,6 +356,25 @@ def get_gradio_interface(
|
|
347 |
)
|
348 |
|
349 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
350 |
if __name__ == '__main__':
|
351 |
parsed_args = parse_args([])
|
352 |
print("arrrrg:", parsed_args)
|
|
|
211 |
no_seg_out = placeholders["no_seg_out"]
|
212 |
|
213 |
@session_logger.set_uuid_logging
|
214 |
+
def inference(
|
215 |
+
input_str: str,
|
216 |
+
input_image: str | np.ndarray,
|
217 |
+
internal_logger: logging = None,
|
218 |
+
embedding_key: str = None
|
219 |
+
):
|
220 |
if internal_logger is None:
|
221 |
internal_logger = app_logger
|
222 |
|
|
|
259 |
image_np = cv2.imread(input_image)
|
260 |
image_np = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
|
261 |
original_size_list = [image_np.shape[:2]]
|
262 |
+
app_logger.debug("start clip_image_processor.preprocess")
|
263 |
image_clip = (
|
264 |
clip_image_processor.preprocess(image_np, return_tensors="pt")[
|
265 |
"pixel_values"
|
|
|
267 |
.unsqueeze(0)
|
268 |
.cuda()
|
269 |
)
|
270 |
+
app_logger.debug("done clip_image_processor.preprocess")
|
271 |
internal_logger.info(f"image_clip type: {type(image_clip)}.")
|
272 |
image_clip = set_image_precision_by_args(image_clip, args_to_parse.precision)
|
273 |
|
274 |
image = transform.apply_image(image_np)
|
275 |
resize_list = [image.shape[:2]]
|
276 |
|
277 |
+
internal_logger.debug(f"starting preprocess image: {type(image_clip)}.")
|
278 |
image = (
|
279 |
preprocess(torch.from_numpy(image).permute(2, 0, 1).contiguous())
|
280 |
.unsqueeze(0)
|
281 |
.cuda()
|
282 |
)
|
283 |
+
internal_logger.info(f"done preprocess image:{type(image)}, image_clip type: {type(image_clip)}.")
|
284 |
image = set_image_precision_by_args(image, args_to_parse.precision)
|
285 |
|
286 |
input_ids = tokenizer_image_token(prompt, tokenizer, return_tensors="pt")
|
287 |
input_ids = input_ids.unsqueeze(0).cuda()
|
288 |
|
289 |
+
embedding_key = get_hash_array(embedding_key, image, internal_logger)
|
290 |
+
internal_logger.info(f"start model evaluation with embedding_key {embedding_key}.")
|
291 |
output_ids, pred_masks = model.evaluate(
|
292 |
image_clip,
|
293 |
image,
|
|
|
296 |
original_size_list,
|
297 |
max_new_tokens=512,
|
298 |
tokenizer=tokenizer,
|
299 |
+
model_logger=internal_logger,
|
300 |
+
embedding_key=embedding_key
|
301 |
)
|
302 |
internal_logger.info("model evaluation done, start token decoding...")
|
303 |
output_ids = output_ids[0][output_ids[0] != utils.IMAGE_TOKEN_INDEX]
|
|
|
356 |
)
|
357 |
|
358 |
|
359 |
+
def get_hash_array(embedding_key: str, arr: np.ndarray | torch.Tensor, model_logger: logging):
|
360 |
+
from base64 import b64encode
|
361 |
+
from hashlib import sha256
|
362 |
+
|
363 |
+
model_logger.debug(f"embedding_key {embedding_key} is None? {embedding_key is None}.")
|
364 |
+
if embedding_key is None:
|
365 |
+
img2hash = arr
|
366 |
+
if isinstance(arr, torch.Tensor):
|
367 |
+
model_logger.debug("images variable is a Tensor, start converting back to numpy")
|
368 |
+
img2hash = arr.numpy(force=True)
|
369 |
+
model_logger.debug("done Tensor converted back to numpy")
|
370 |
+
model_logger.debug("start image hashing")
|
371 |
+
img2hash_fn = sha256(img2hash)
|
372 |
+
embedding_key = b64encode(img2hash_fn.digest())
|
373 |
+
embedding_key = embedding_key.decode("utf-8")
|
374 |
+
model_logger.debug(f"done image hashing, now embedding_key is {embedding_key}.")
|
375 |
+
return embedding_key
|
376 |
+
|
377 |
+
|
378 |
if __name__ == '__main__':
|
379 |
parsed_args = parse_args([])
|
380 |
print("arrrrg:", parsed_args)
|
scripts/baremetal_entrypoint.sh
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
|
3 |
+
if [ -z "${WORKDIR}" ];
|
4 |
+
then
|
5 |
+
WORKDIR=$1
|
6 |
+
fi
|
7 |
+
|
8 |
+
if [ -z "${XDG_CACHE_HOME}" ];
|
9 |
+
then
|
10 |
+
XDG_CACHE_HOME=$HOME/.cache
|
11 |
+
fi
|
12 |
+
|
13 |
+
echo "WORKDIR: ${WORKDIR} ..."
|
14 |
+
echo "XDG_CACHE_HOME: ${XDG_CACHE_HOME} ..."
|
15 |
+
|
16 |
+
cd ${WORKDIR}
|
17 |
+
|
18 |
+
if [ ! -f "${WORKDIR}/.env_source" ];
|
19 |
+
then
|
20 |
+
echo "missing ${WORKDIR}/.env_source file, exit now..."
|
21 |
+
exit 1
|
22 |
+
fi
|
23 |
+
|
24 |
+
source ${WORKDIR}/.env_source
|
25 |
+
echo "FOLDERS_MAP: ${FOLDERS_MAP} ..."
|
26 |
+
|
27 |
+
which python
|
28 |
+
python --version
|
29 |
+
python ${WORKDIR}/scripts/create_folders_and_variables_if_not_exists.py
|
30 |
+
|
31 |
+
cd ${WORKDIR}/static
|
32 |
+
npm install -g npm pnpm
|
33 |
+
pnpm install
|
34 |
+
pnpm build
|
35 |
+
pnpm tailwindcss -i ${WORKDIR}/static/src/input.css -o ${WORKDIR}/static/dist/output.css
|
36 |
+
cd ${WORKDIR}
|
37 |
+
|
38 |
+
chmod +x ${WORKDIR}/scripts/entrypoint.sh
|
39 |
+
bash ${WORKDIR}/scripts/entrypoint.sh "baremetal"
|
40 |
+
|
41 |
+
exit 0
|
scripts/create_folders_and_variables_if_not_exists.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import logging
|
3 |
+
import os
|
4 |
+
from pathlib import Path
|
5 |
+
|
6 |
+
|
7 |
+
def stats_pathname(pathname: Path | str):
|
8 |
+
current_pathname = Path(pathname)
|
9 |
+
return current_pathname.is_dir()
|
10 |
+
|
11 |
+
|
12 |
+
def create_folder_if_not_exists(pathname: Path | str):
|
13 |
+
current_pathname = Path(pathname)
|
14 |
+
try:
|
15 |
+
print(f"Pathname exists? {current_pathname.exists()}, That's a folder? {current_pathname.is_dir()}...")
|
16 |
+
logging.info(f"Pathname exists? {current_pathname.exists()}, That's a folder? {current_pathname.is_dir()}...")
|
17 |
+
current_pathname.unlink(missing_ok=True)
|
18 |
+
except PermissionError as pe:
|
19 |
+
print(f"permission denied on removing pathname before folder creation:{pe}.")
|
20 |
+
logging.error(f"permission denied on removing pathname before folder creation:{pe}.")
|
21 |
+
except IsADirectoryError as errdir:
|
22 |
+
print(f"that's a directory:{errdir}.")
|
23 |
+
logging.error(f"that's a directory:{errdir}.")
|
24 |
+
|
25 |
+
print(f"Creating pathname: {current_pathname} ...")
|
26 |
+
logging.info(f"Creating pathname: {current_pathname} ...")
|
27 |
+
current_pathname.mkdir(mode=0o770, parents=True, exist_ok=True)
|
28 |
+
|
29 |
+
print(f"assertion: pathname exists and is a folder: {current_pathname} ...")
|
30 |
+
logging.info(f"assertion: pathname exists and is a folder: {current_pathname} ...")
|
31 |
+
assert current_pathname.is_dir()
|
32 |
+
|
33 |
+
|
34 |
+
if __name__ == '__main__':
|
35 |
+
folders_string = os.getenv("FOLDERS_MAP")
|
36 |
+
try:
|
37 |
+
folders_dict = json.loads(folders_string)
|
38 |
+
for folder_env_ref, folder_env_path in folders_dict.items():
|
39 |
+
print(f"folder_env_ref:{folder_env_ref}, folder_env_path:{folder_env_path}.")
|
40 |
+
logging.info(f"folder_env_ref:{folder_env_ref}, folder_env_path:{folder_env_path}.")
|
41 |
+
create_folder_if_not_exists(folder_env_path)
|
42 |
+
print("========")
|
43 |
+
assert os.getenv(folder_env_ref) == folder_env_path
|
44 |
+
except (json.JSONDecodeError, TypeError) as jde:
|
45 |
+
print(f"jde:{jde}.")
|
46 |
+
logging.error(f"jde:{jde}.")
|
47 |
+
print("double check your variables, e.g. for mispelling like 'FOLDER_MAP'...")
|
48 |
+
logging.info("double check your variables, e.g. for mispelling like 'FOLDER_MAP' instead than 'FOLDERS_MAP'...")
|
49 |
+
for k_env, v_env in dict(os.environ).items():
|
50 |
+
print(f"{k_env}, v_env:{v_env}.")
|
51 |
+
logging.info(f"{k_env}, v_env:{v_env}.")
|
scripts/entrypoint.sh
CHANGED
@@ -1,7 +1,11 @@
|
|
1 |
#!/usr/bin/env bash
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
5 |
MPLCONFIGDIR=${XDG_CACHE_HOME}/.cache/matplotlib
|
6 |
TRANSFORMERS_CACHE=${XDG_CACHE_HOME}/.cache/transformers
|
7 |
FASTAPI_STATIC=${XDG_CACHE_HOME}/static
|
@@ -45,13 +49,22 @@ echo "WORKDIR - /var/task"
|
|
45 |
ls -l ${WORKDIR}
|
46 |
|
47 |
echo "XDG_CACHE_HOME - /data"
|
48 |
-
|
|
|
|
|
|
|
|
|
49 |
|
50 |
CUDA_VISIBLE_DEVICES=$(nvidia-smi --query-gpu=memory.free,index --format=csv,nounits,noheader | sort -nr | head -1 | awk '{ print $NF }')
|
51 |
echo "calculated CUDA_VISIBLE_DEVICES env variable: ${CUDA_VISIBLE_DEVICES}."
|
52 |
export CUDA_VISIBLE_DEVICES
|
53 |
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
exit 0
|
|
|
1 |
#!/usr/bin/env bash
|
2 |
|
3 |
+
if [ -z "$1" ];
|
4 |
+
then
|
5 |
+
echo "use no \$1 variable, set WORKDIR and XDG_CACHE_HOME as for docker container mode"
|
6 |
+
WORKDIR="/var/task"
|
7 |
+
XDG_CACHE_HOME="/data"
|
8 |
+
fi
|
9 |
MPLCONFIGDIR=${XDG_CACHE_HOME}/.cache/matplotlib
|
10 |
TRANSFORMERS_CACHE=${XDG_CACHE_HOME}/.cache/transformers
|
11 |
FASTAPI_STATIC=${XDG_CACHE_HOME}/static
|
|
|
49 |
ls -l ${WORKDIR}
|
50 |
|
51 |
echo "XDG_CACHE_HOME - /data"
|
52 |
+
if [ -z "$1" ];
|
53 |
+
then
|
54 |
+
echo "use no \$1 variable, show folder ${XDG_CACHE_HOME} content"
|
55 |
+
find ${XDG_CACHE_HOME}
|
56 |
+
fi
|
57 |
|
58 |
CUDA_VISIBLE_DEVICES=$(nvidia-smi --query-gpu=memory.free,index --format=csv,nounits,noheader | sort -nr | head -1 | awk '{ print $NF }')
|
59 |
echo "calculated CUDA_VISIBLE_DEVICES env variable: ${CUDA_VISIBLE_DEVICES}."
|
60 |
export CUDA_VISIBLE_DEVICES
|
61 |
|
62 |
+
PYTHONFILE="lisa_on_cuda.app.main"
|
63 |
+
if [ -z "$1" ];
|
64 |
+
then
|
65 |
+
PYTHONFILE="app.main"
|
66 |
+
fi
|
67 |
+
echo "running command 'uvicorn ${PYTHONFILE}:app --host 0.0.0.0 --port 7860'..."
|
68 |
+
uvicorn ${PYTHONFILE}:app --host 0.0.0.0 --port 7860
|
69 |
|
70 |
exit 0
|