import argparse import logging import os import re from typing import Callable import cv2 import gradio as gr import nh3 import numpy as np import torch import torch.nn.functional as F from transformers import AutoTokenizer, BitsAndBytesConfig, CLIPImageProcessor from . import constants, session_logger, utils from model.LISA import LISAForCausalLM from model.llava import conversation as conversation_lib from model.llava.mm_utils import tokenizer_image_token from model.segment_anything.utils.transforms import ResizeLongestSide placeholders = utils.create_placeholder_variables() @session_logger.set_uuid_logging def parse_args(args_to_parse): parser = argparse.ArgumentParser(description="LISA chat") parser.add_argument("--version", default="xinlai/LISA-13B-llama2-v1-explanatory") parser.add_argument("--vis_save_path", default="./vis_output", type=str) parser.add_argument( "--precision", default="fp16", type=str, choices=["fp32", "bf16", "fp16"], help="precision for inference", ) parser.add_argument("--image_size", default=1024, type=int, help="image size") parser.add_argument("--model_max_length", default=512, type=int) parser.add_argument("--lora_r", default=8, type=int) parser.add_argument( "--vision-tower", default="openai/clip-vit-large-patch14", type=str ) parser.add_argument("--local-rank", default=0, type=int, help="node rank") parser.add_argument("--load_in_8bit", action="store_true", default=False) parser.add_argument("--load_in_4bit", action="store_true", default=True) parser.add_argument("--use_mm_start_end", action="store_true", default=True) parser.add_argument( "--conv_type", default="llava_v1", type=str, choices=["llava_v1", "llava_llama_2"], ) return parser.parse_args(args_to_parse) @session_logger.set_uuid_logging def get_cleaned_input(input_str): logging.info(f"start cleaning of input_str: {input_str}.") input_str = nh3.clean( input_str, tags={ "a", "abbr", "acronym", "b", "blockquote", "code", "em", "i", "li", "ol", "strong", "ul", }, attributes={ "a": {"href", "title"}, "abbr": {"title"}, "acronym": {"title"}, }, url_schemes={"http", "https", "mailto"}, link_rel=None, ) logging.info(f"cleaned input_str: {input_str}.") return input_str @session_logger.set_uuid_logging def set_image_precision_by_args(input_image, precision): if precision == "bf16": input_image = input_image.bfloat16() elif precision == "fp16": input_image = input_image.half() else: input_image = input_image.float() return input_image @session_logger.set_uuid_logging def preprocess( x, pixel_mean=torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1), pixel_std=torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1), img_size=1024, ) -> torch.Tensor: """Normalize pixel values and pad to a square input.""" logging.info("preprocess started") # Normalize colors x = (x - pixel_mean) / pixel_std # Pad h, w = x.shape[-2:] padh = img_size - h padw = img_size - w x = F.pad(x, (0, padw, 0, padh)) logging.info("preprocess ended") return x @session_logger.set_uuid_logging def get_model(args_to_parse): logging.info("starting model preparation...") os.makedirs(args_to_parse.vis_save_path, exist_ok=True) # global tokenizer, tokenizer # Create model _tokenizer = AutoTokenizer.from_pretrained( args_to_parse.version, cache_dir=None, model_max_length=args_to_parse.model_max_length, padding_side="right", use_fast=False, ) _tokenizer.pad_token = _tokenizer.unk_token args_to_parse.seg_token_idx = _tokenizer("[SEG]", add_special_tokens=False).input_ids[0] torch_dtype = torch.float32 if args_to_parse.precision == "bf16": torch_dtype = torch.bfloat16 elif args_to_parse.precision == "fp16": torch_dtype = torch.half kwargs = {"torch_dtype": torch_dtype} if args_to_parse.load_in_4bit: kwargs.update( { "torch_dtype": torch.half, "load_in_4bit": True, "quantization_config": BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", llm_int8_skip_modules=["visual_model"], ), } ) elif args_to_parse.load_in_8bit: kwargs.update( { "torch_dtype": torch.half, "quantization_config": BitsAndBytesConfig( llm_int8_skip_modules=["visual_model"], load_in_8bit=True, ), } ) _model = LISAForCausalLM.from_pretrained( args_to_parse.version, low_cpu_mem_usage=True, vision_tower=args_to_parse.vision_tower, seg_token_idx=args_to_parse.seg_token_idx, **kwargs ) _model.config.eos_token_id = _tokenizer.eos_token_id _model.config.bos_token_id = _tokenizer.bos_token_id _model.config.pad_token_id = _tokenizer.pad_token_id _model.get_model().initialize_vision_modules(_model.get_model().config) vision_tower = _model.get_model().get_vision_tower() vision_tower.to(dtype=torch_dtype) if args_to_parse.precision == "bf16": _model = _model.bfloat16().cuda() elif ( args_to_parse.precision == "fp16" and (not args_to_parse.load_in_4bit) and (not args_to_parse.load_in_8bit) ): vision_tower = _model.get_model().get_vision_tower() _model.model.vision_tower = None import deepspeed model_engine = deepspeed.init_inference( model=_model, dtype=torch.half, replace_with_kernel_inject=True, replace_method="auto", ) _model = model_engine.module _model.model.vision_tower = vision_tower.half().cuda() elif args_to_parse.precision == "fp32": _model = _model.float().cuda() vision_tower = _model.get_model().get_vision_tower() vision_tower.to(device=args_to_parse.local_rank) _clip_image_processor = CLIPImageProcessor.from_pretrained(_model.config.vision_tower) _transform = ResizeLongestSide(args_to_parse.image_size) _model.eval() logging.info("model preparation ok!") return _model, _clip_image_processor, _tokenizer, _transform @session_logger.set_uuid_logging def get_inference_model_by_args(args_to_parse): logging.info(f"args_to_parse:{args_to_parse}, creating model...") model, clip_image_processor, tokenizer, transform = get_model(args_to_parse) logging.info("created model, preparing inference function") no_seg_out, error_happened = placeholders["no_seg_out"], placeholders["error_happened"] @session_logger.set_uuid_logging def inference(input_str, input_image_pathname): ## filter out special chars input_str = get_cleaned_input(input_str) logging.info(f"input_str type: {type(input_str)}, input_image type: {type(input_image_pathname)}.") logging.info(f"input_str: {input_str}, input_image: {type(input_image_pathname)}.") ## input valid check if not re.match(r"^[A-Za-z ,.!?\'\"]+$", input_str) or len(input_str) < 1: output_str = "[Error] Invalid input: ", input_str return error_happened, output_str # Model Inference conv = conversation_lib.conv_templates[args_to_parse.conv_type].copy() conv.messages = [] prompt = input_str prompt = utils.DEFAULT_IMAGE_TOKEN + "\n" + prompt if args_to_parse.use_mm_start_end: replace_token = ( utils.DEFAULT_IM_START_TOKEN + utils.DEFAULT_IMAGE_TOKEN + utils.DEFAULT_IM_END_TOKEN ) prompt = prompt.replace(utils.DEFAULT_IMAGE_TOKEN, replace_token) conv.append_message(conv.roles[0], prompt) conv.append_message(conv.roles[1], "") prompt = conv.get_prompt() image_np = cv2.imread(input_image_pathname) image_np = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB) original_size_list = [image_np.shape[:2]] image_clip = ( clip_image_processor.preprocess(image_np, return_tensors="pt")[ "pixel_values" ][0] .unsqueeze(0) .cuda() ) logging.info(f"image_clip type: {type(image_clip)}.") image_clip = set_image_precision_by_args(image_clip, args_to_parse.precision) image = transform.apply_image(image_np) resize_list = [image.shape[:2]] image = ( preprocess(torch.from_numpy(image).permute(2, 0, 1).contiguous()) .unsqueeze(0) .cuda() ) logging.info(f"image_clip type: {type(image_clip)}.") image = set_image_precision_by_args(image, args_to_parse.precision) input_ids = tokenizer_image_token(prompt, tokenizer, return_tensors="pt") input_ids = input_ids.unsqueeze(0).cuda() output_ids, pred_masks = model.evaluate( image_clip, image, input_ids, resize_list, original_size_list, max_new_tokens=512, tokenizer=tokenizer, ) output_ids = output_ids[0][output_ids[0] != utils.IMAGE_TOKEN_INDEX] text_output = tokenizer.decode(output_ids, skip_special_tokens=False) text_output = text_output.replace("\n", "").replace(" ", " ") text_output = text_output.split("ASSISTANT: ")[-1] logging.info(f"text_output type: {type(text_output)}, text_output: {text_output}.") save_img = None for i, pred_mask in enumerate(pred_masks): if pred_mask.shape[0] == 0: continue pred_mask = pred_mask.detach().cpu().numpy()[0] pred_mask = pred_mask > 0 save_img = image_np.copy() save_img[pred_mask] = ( image_np * 0.5 + pred_mask[:, :, None].astype(np.uint8) * np.array([255, 0, 0]) * 0.5 )[pred_mask] output_str = f"ASSISTANT: {text_output}" output_image = no_seg_out if save_img is None else save_img logging.info(f"output_image type: {type(output_image)}.") return output_image, output_str logging.info("prepared inference function!") return inference @session_logger.set_uuid_logging def get_gradio_interface( fn_inference: Callable ): return gr.Interface( fn_inference, inputs=[ gr.Textbox(lines=1, placeholder=None, label="Text Instruction"), gr.Image(type="filepath", label="Input Image") ], outputs=[ gr.Image(type="pil", label="Segmentation Output"), gr.Textbox(lines=1, placeholder=None, label="Text Output") ], title=constants.title, description=constants.description, article=constants.article, examples=constants.examples, allow_flagging="auto" )