alessandro trinca tornidor
feat: first attempt to support samgis-lisa-on-cuda on ZeroGPU huggingface space
8783164
import unittest | |
from unittest.mock import patch | |
import numpy as np | |
from samgis_core.utilities.utilities import hash_calculate | |
from samgis_lisa_on_zero.io import raster_helpers | |
def get_three_channels(size=5, param1=1000, param2=3, param3=-88): | |
arr_base = np.arange(size*size).reshape(size, size) / size**2 | |
channel_0 = arr_base * param1 | |
channel_1 = arr_base * param2 | |
channel_2 = arr_base * param3 | |
return channel_0, channel_1, channel_2 | |
def helper_bell(size=10, param1=0.1, param2=2): | |
x = np.linspace(-size, size, num=size**2) | |
y = np.linspace(-size, size, num=size**2) | |
x, y = np.meshgrid(x, y) | |
return np.exp(-param1 * x ** param2 - param1 * y ** param2) | |
arr_5x5x5 = np.arange(125).reshape((5, 5, 5)) / 25 | |
arr = np.arange(25).resize((5, 5)) | |
channel0, channel1, channel2 = get_three_channels() | |
z = helper_bell() | |
slope_z_cellsize3, curvature_z_cellsize3 = raster_helpers.get_slope_curvature(z, slope_cellsize=3) | |
class Test(unittest.TestCase): | |
def test_get_rgb_prediction_image_real(self): | |
output = raster_helpers.get_rgb_prediction_image(z, slope_cellsize=61, invert_image=True) | |
hash_output = hash_calculate(output) | |
assert hash_output == b'QpQ9yxgCLw9cf3klNFKNFXIDHaSkuiZxkbpeQApR8pA=' | |
output = raster_helpers.get_rgb_prediction_image(z, slope_cellsize=61, invert_image=False) | |
hash_output = hash_calculate(output) | |
assert hash_output == b'Y+iXO9w/sKzNVOw2rBh2JrVGJUFRqaa8/0F9hpevmLs=' | |
def test_get_rgb_prediction_image_mocked(self, get_rgb_image_mocked, normalize_array_list, get_slope_curvature): | |
local_arr = np.array(z * 100, dtype=np.uint8) | |
get_slope_curvature.return_value = slope_z_cellsize3, curvature_z_cellsize3 | |
normalize_array_list.side_effect = None | |
get_rgb_image_mocked.return_value = np.bitwise_not(local_arr) | |
output = raster_helpers.get_rgb_prediction_image(local_arr, slope_cellsize=61, invert_image=True) | |
hash_output = hash_calculate(output) | |
assert hash_output == b'BPIyVH64RgVunj42EuQAx4/v59Va8ZAjcMnuiGNqTT0=' | |
get_rgb_image_mocked.return_value = local_arr | |
output = raster_helpers.get_rgb_prediction_image(local_arr, slope_cellsize=61, invert_image=False) | |
hash_output = hash_calculate(output) | |
assert hash_output == b'XX54sdLQQUrhkUHT6ikQZYSloMYDSfh/AGITDq6jnRM=' | |
def test_get_rgb_prediction_image_value_error(self, get_slope_curvature): | |
msg = "this is a value error" | |
get_slope_curvature.side_effect = ValueError(msg) | |
with self.assertRaises(ValueError): | |
try: | |
raster_helpers.get_rgb_prediction_image(arr, slope_cellsize=3) | |
except ValueError as ve: | |
self.assertEqual(str(ve), msg) | |
raise ve | |
def test_get_rgb_image(self): | |
output = raster_helpers.get_rgb_image(channel0, channel1, channel2, invert_image=True) | |
hash_output = hash_calculate(output) | |
assert hash_output == b'YVnRWla5Ptfet6reSfM+OEIsGytLkeso6X+CRs34YHk=' | |
output = raster_helpers.get_rgb_image(channel0, channel1, channel2, invert_image=False) | |
hash_output = hash_calculate(output) | |
assert hash_output == b'LC/kIZGUZULSrwwSXCeP1My2spTZdW9D7LH+tltwERs=' | |
def test_get_rgb_image_value_error_1(self): | |
with self.assertRaises(ValueError): | |
try: | |
raster_helpers.get_rgb_image(arr_5x5x5, arr_5x5x5, arr_5x5x5, invert_image=True) | |
except ValueError as ve: | |
self.assertEqual(f"arr_size, wrong type:{type(arr_5x5x5)} or arr_size:{arr_5x5x5.shape}.", str(ve)) | |
raise ve | |
def test_get_rgb_image_value_error2(self): | |
arr_0 = np.arange(25).reshape((5, 5)) | |
arr_1 = np.arange(4).reshape((2, 2)) | |
with self.assertRaises(ValueError): | |
try: | |
raster_helpers.get_rgb_image(arr_0, arr_1, channel2, invert_image=True) | |
except ValueError as ve: | |
self.assertEqual('could not broadcast input array from shape (2,2) into shape (5,5)', str(ve)) | |
raise ve | |
def test_get_slope_curvature(self): | |
slope_output, curvature_output = raster_helpers.get_slope_curvature(z, slope_cellsize=3) | |
hash_curvature = hash_calculate(curvature_output) | |
hash_slope = hash_calculate(slope_output) | |
assert hash_curvature == b'LAL9JFOjJP9D6X4X3fVCpnitx9VPM9drS5YMHwMZ3iE=' | |
assert hash_slope == b'IYf6x4G0lmR47j6HRS5kUYWdtmimhLz2nak8py75nwc=' | |
def test_get_slope_curvature_value_error(self): | |
from samgis_lisa_on_zero.io import raster_helpers | |
with self.assertRaises(ValueError): | |
try: | |
raster_helpers.get_slope_curvature(np.array(1), slope_cellsize=3) | |
except ValueError as ve: | |
self.assertEqual('not enough values to unpack (expected 2, got 0)', str(ve)) | |
raise ve | |
def test_calculate_slope(self): | |
slope_output = raster_helpers.calculate_slope(z, cell_size=3) | |
hash_output = hash_calculate(slope_output) | |
assert hash_output == b'IYf6x4G0lmR47j6HRS5kUYWdtmimhLz2nak8py75nwc=' | |
def test_calculate_slope_value_error(self): | |
with self.assertRaises(ValueError): | |
try: | |
raster_helpers.calculate_slope(np.array(1), cell_size=3) | |
except ValueError as ve: | |
self.assertEqual('not enough values to unpack (expected 2, got 0)', str(ve)) | |
raise ve | |
def test_normalize_array(self): | |
def check_ndarrays_almost_equal(cls, arr1, arr2, places, check_type="float", check_ndiff=1): | |
count_abs_diff = 0 | |
for list00, list01 in zip(arr1.tolist(), arr2.tolist()): | |
for el00, el01 in zip(list00, list01): | |
ndiff = abs(el00 - el01) | |
if el00 != el01: | |
count_abs_diff += 1 | |
if check_type == "float": | |
cls.assertAlmostEqual(el00, el01, places=places) | |
cls.assertLess(ndiff, check_ndiff) # cls.assertTrue(ndiff < check_ndiff) | |
print("count_abs_diff:", count_abs_diff) | |
normalized_array = raster_helpers.normalize_array(z) | |
hash_output = hash_calculate(normalized_array) | |
assert hash_output == b'MPkQwiiQa5NxL7LDvCS9V143YUEJT/Qh1aNEKc/Ehvo=' | |
mult_variable = 3.423 | |
test_array_input = np.arange(256).reshape((16, 16)) | |
test_array_output = raster_helpers.normalize_array(test_array_input * mult_variable) | |
check_ndarrays_almost_equal(self, test_array_output, test_array_input, places=8) | |
test_array_output1 = raster_helpers.normalize_array(test_array_input * mult_variable, high=128, norm_type="int") | |
o = np.arange(256).reshape((16, 16)) / 2 | |
expected_array_output1 = o.astype(int) | |
check_ndarrays_almost_equal( | |
self, test_array_output1, expected_array_output1, places=2, check_type="int", check_ndiff=2) | |
def test_normalize_array_floating_point_error_mocked(self, nanmax_mocked, nanmin_mocked): | |
nanmax_mocked.return_value = 100 | |
nanmin_mocked.return_value = 100 | |
with self.assertRaises(ValueError): | |
try: | |
raster_helpers.normalize_array( | |
np.arange(25).reshape((5, 5)) | |
) | |
except ValueError as ve: | |
self.assertEqual( | |
"normalize_array:::h_arr_max:100,h_min_arr:100,fe:divide by zero encountered in divide.", | |
str(ve) | |
) | |
raise ve | |
def test_normalize_array_exception_error_mocked(self, nanmax_mocked, nanmin_mocked): | |
nanmax_mocked.return_value = 100 | |
nanmin_mocked.return_value = np.NaN | |
with self.assertRaises(ValueError): | |
try: | |
raster_helpers.normalize_array( | |
np.arange(25).reshape((5, 5)) | |
) | |
except ValueError as ve: | |
self.assertEqual("cannot convert float NaN to integer", str(ve)) | |
raise ve | |
def test_normalize_array_value_error(self): | |
with self.assertRaises(ValueError): | |
try: | |
raster_helpers.normalize_array( | |
np.zeros((5, 5)) | |
) | |
except ValueError as ve: | |
self.assertEqual( | |
"normalize_array::empty array '',h_min_arr:0.0,h_arr_max:0.0,h_diff:0.0, " 'dtype:float64.', | |
str(ve) | |
) | |
raise ve | |
def test_normalize_array_list(self): | |
normalized_array = raster_helpers.normalize_array_list([channel0, channel1, channel2]) | |
hash_output = hash_calculate(normalized_array) | |
assert hash_output == b'+6IbhIpyb3vPElTgqqPkQdIR0umf4uFP2c7t5IaBVvI=' | |
test_norm_list_output2 = raster_helpers.normalize_array_list( | |
[channel0, channel1, channel2], exaggerations_list=[2.0, 3.0, 5.0]) | |
hash_variable2 = hash_calculate(test_norm_list_output2) | |
assert hash_variable2 == b'yYCYWCKO3i8NYsWk/wgYOzSRRLSLUprEs7mChJkdL+A=' | |
def test_normalize_array_list_value_error(self): | |
with self.assertRaises(ValueError): | |
try: | |
raster_helpers.normalize_array_list([]) | |
except ValueError as ve: | |
self.assertEqual("input list can't be empty:[].", str(ve)) | |
raise ve | |
def test_check_empty_array(self): | |
a = np.zeros((10, 10)) | |
b = np.ones((10, 10)) | |
c = np.ones((10, 10)) * 2 | |
d = np.zeros((10, 10)) | |
d[1, 1] = np.nan | |
e = np.ones((10, 10)) * 3 | |
e[1, 1] = np.nan | |
self.assertTrue(raster_helpers.check_empty_array(a, 999)) | |
self.assertTrue(raster_helpers.check_empty_array(b, 0)) | |
self.assertTrue(raster_helpers.check_empty_array(c, 2)) | |
self.assertTrue(raster_helpers.check_empty_array(d, 0)) | |
self.assertTrue(raster_helpers.check_empty_array(e, 3)) | |
self.assertFalse(raster_helpers.check_empty_array(z, 3)) | |
def test_get_nextzen_terrain_rgb_formula(self): | |
output = raster_helpers.get_nextzen_terrain_rgb_formula(channel0, channel1, channel2) | |
hash_output = hash_calculate(output) | |
assert hash_output == b'3KJ81YKmQRdccRZARbByfwo1iMVLj8xxz9mfsWki/qA=' | |
def test_get_mapbox__terrain_rgb_formula(self): | |
output = raster_helpers.get_mapbox__terrain_rgb_formula(channel0, channel1, channel2) | |
hash_output = hash_calculate(output) | |
assert hash_output == b'RU7CcoKoR3Fkh5LE+m48DHRVUy/vGq6UgfOFUMXx07M=' | |
def test_get_raster_terrain_rgb_like(self): | |
from samgis_lisa_on_zero.utilities.type_hints import XYZTerrainProvidersNames | |
arr_input = raster_helpers.get_rgb_image(channel0, channel1, channel2, invert_image=True) | |
output_nextzen = raster_helpers.get_raster_terrain_rgb_like( | |
arr_input, XYZTerrainProvidersNames.NEXTZEN_TERRAIN_TILES_NAME) | |
hash_nextzen = hash_calculate(output_nextzen) | |
assert hash_nextzen == b'+o2OTJliJkkBoqiAIGnhJ4s0xoLQ4MxHOvevLhNxysE=' | |
output_mapbox = raster_helpers.get_raster_terrain_rgb_like( | |
arr_input, XYZTerrainProvidersNames.MAPBOX_TERRAIN_TILES_NAME) | |
hash_mapbox = hash_calculate(output_mapbox) | |
assert hash_mapbox == b'zWmekyKrpnmHnuDACnveCJl+o4GuhtHJmGlRDVwsce4=' | |