--- title: SamGIS - LISA on ZeroGPU emoji: 🗺️ colorFrom: red colorTo: blue sdk: gradio sdk_version: 4.37.2 app_file: app.py pinned: true license: mit --- # [LISA](https://github.com/dvlab-research/LISA) + [SamGIS](https://github.com/trincadev/samgis-be) on Zero GPU! [LISA](https://github.com/dvlab-research/LISA) (Reasoning Segmentation via Large Language Model) applied to geospatial data thanks to [SamGIS](https://github.com/trincadev/samgis-be). I also adapted LISA to HuggingFace [lisa-on-cuda](https://huggingface.co/spaces/aletrn/lisa-on-cuda) ZeroGPU space. ## Custom environment variables for HuggingFace ZeroGPU Space Fundamental environment variables you need are: ```bash XDG_CACHE_HOME="/data/.cache" PROJECT_ROOT_FOLDER="/home/user/app" WORKDIR="/home/user/app" ``` Derived ones: ```bash MPLCONFIGDIR="/data/.cache/matplotlib" TRANSFORMERS_CACHE="/data/.cache/transformers" PYTORCH_KERNEL_CACHE_PATH="/data/.cache/torch/kernels" FASTAPI_STATIC="/home/user/app/static" VIS_OUTPUT="/home/user/app/vis_output" MODEL_FOLDER="/home/user/app/machine_learning_models" FOLDERS_MAP='{"WORKDIR":"/home/user/app","XDG_CACHE_HOME":"/data/.cache","PROJECT_ROOT_FOLDER":"/home/user/app","MPLCONFIGDIR":"/data/.cache/matplotlib","TRANSFORMERS_CACHE":"/data/.cache/transformers","PYTORCH_KERNEL_CACHE_PATH":"/data/.cache/torch/kernels","FASTAPI_STATIC":"/home/user/app/static","VIS_OUTPUT":"/home/user/app/vis_output"}' ``` The function `build_frontend()` from lisa_on_cuda package create all the folders required for this project using the environment variable `FOLDERS_MAP`. That's useful for cache folders (XDG_CACHE_HOME, MPLCONFIGDIR, TRANSFORMERS_CACHE, PYTORCH_KERNEL_CACHE_PATH) because missing these can slow down the inference process. Also you could keep these folders in a permanent storage disk mounted on a custom path. To change the base relative url for custom frontend add the VITE_PREFIX environment variable, e.g.: ```bash VITE_INDEX_URL="/custom-url" ```