saattrupdan
commited on
Commit
·
1ef58ee
1
Parent(s):
1c2b5d0
feat: Initial commit
Browse files- .gitignore +1 -0
- app.py +370 -0
- requirements.txt +69 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
.venv
|
app.py
ADDED
@@ -0,0 +1,370 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Script to produce radial plots."""
|
2 |
+
|
3 |
+
from functools import partial
|
4 |
+
import plotly.graph_objects as go
|
5 |
+
import json
|
6 |
+
import numpy as np
|
7 |
+
from collections import defaultdict
|
8 |
+
import pandas as pd
|
9 |
+
from pydantic import BaseModel
|
10 |
+
import gradio as gr
|
11 |
+
import requests
|
12 |
+
|
13 |
+
|
14 |
+
class Task(BaseModel):
|
15 |
+
"""Class to hold task information."""
|
16 |
+
|
17 |
+
name: str
|
18 |
+
metric: str
|
19 |
+
|
20 |
+
def __hash__(self):
|
21 |
+
return hash(self.name)
|
22 |
+
|
23 |
+
|
24 |
+
class Language(BaseModel):
|
25 |
+
"""Class to hold language information."""
|
26 |
+
|
27 |
+
code: str
|
28 |
+
name: str
|
29 |
+
|
30 |
+
def __hash__(self):
|
31 |
+
return hash(self.code)
|
32 |
+
|
33 |
+
|
34 |
+
class Dataset(BaseModel):
|
35 |
+
"""Class to hold dataset information."""
|
36 |
+
|
37 |
+
name: str
|
38 |
+
language: Language
|
39 |
+
task: Task
|
40 |
+
|
41 |
+
def __hash__(self):
|
42 |
+
return hash(self.name)
|
43 |
+
|
44 |
+
|
45 |
+
TEXT_CLASSIFICATION = Task(name="text classification", metric="mcc")
|
46 |
+
INFORMATION_EXTRACTION = Task(name="information extraction", metric="micro_f1_no_misc")
|
47 |
+
GRAMMAR = Task(name="grammar", metric="mcc")
|
48 |
+
QUESTION_ANSWERING = Task(name="question answering", metric="em")
|
49 |
+
SUMMARISATION = Task(name="summarisation", metric="bertscore")
|
50 |
+
KNOWLEDGE = Task(name="knowledge", metric="mcc")
|
51 |
+
REASONING = Task(name="reasoning", metric="mcc")
|
52 |
+
ALL_TASKS = [obj for obj in globals().values() if isinstance(obj, Task)]
|
53 |
+
|
54 |
+
DANISH = Language(code="da", name="Danish")
|
55 |
+
NORWEGIAN = Language(code="no", name="Norwegian")
|
56 |
+
SWEDISH = Language(code="sv", name="Swedish")
|
57 |
+
ICELANDIC = Language(code="is", name="Icelandic")
|
58 |
+
FAROESE = Language(code="fo", name="Faroese")
|
59 |
+
GERMAN = Language(code="de", name="German")
|
60 |
+
DUTCH = Language(code="nl", name="Dutch")
|
61 |
+
ENGLISH = Language(code="en", name="English")
|
62 |
+
ALL_LANGUAGES = {
|
63 |
+
obj.name: obj for obj in globals().values() if isinstance(obj, Language)
|
64 |
+
}
|
65 |
+
|
66 |
+
DATASETS = [
|
67 |
+
Dataset(name="swerec", language=SWEDISH, task=TEXT_CLASSIFICATION),
|
68 |
+
Dataset(name="angry-tweets", language=DANISH, task=TEXT_CLASSIFICATION),
|
69 |
+
Dataset(name="norec", language=NORWEGIAN, task=TEXT_CLASSIFICATION),
|
70 |
+
Dataset(name="sb10k", language=GERMAN, task=TEXT_CLASSIFICATION),
|
71 |
+
Dataset(name="dutch-social", language=DUTCH, task=TEXT_CLASSIFICATION),
|
72 |
+
Dataset(name="sst5", language=ENGLISH, task=TEXT_CLASSIFICATION),
|
73 |
+
Dataset(name="suc3", language=SWEDISH, task=INFORMATION_EXTRACTION),
|
74 |
+
Dataset(name="dansk", language=DANISH, task=INFORMATION_EXTRACTION),
|
75 |
+
Dataset(name="norne-nb", language=NORWEGIAN, task=INFORMATION_EXTRACTION),
|
76 |
+
Dataset(name="norne-nn", language=NORWEGIAN, task=INFORMATION_EXTRACTION),
|
77 |
+
Dataset(name="mim-gold-ner", language=ICELANDIC, task=INFORMATION_EXTRACTION),
|
78 |
+
Dataset(name="fone", language=FAROESE, task=INFORMATION_EXTRACTION),
|
79 |
+
Dataset(name="germeval", language=GERMAN, task=INFORMATION_EXTRACTION),
|
80 |
+
Dataset(name="conll-nl", language=DUTCH, task=INFORMATION_EXTRACTION),
|
81 |
+
Dataset(name="conll-en", language=ENGLISH, task=INFORMATION_EXTRACTION),
|
82 |
+
Dataset(name="scala-sv", language=SWEDISH, task=GRAMMAR),
|
83 |
+
Dataset(name="scala-da", language=DANISH, task=GRAMMAR),
|
84 |
+
Dataset(name="scala-nb", language=NORWEGIAN, task=GRAMMAR),
|
85 |
+
Dataset(name="scala-nn", language=NORWEGIAN, task=GRAMMAR),
|
86 |
+
Dataset(name="scala-is", language=ICELANDIC, task=GRAMMAR),
|
87 |
+
Dataset(name="scala-fo", language=FAROESE, task=GRAMMAR),
|
88 |
+
Dataset(name="scala-de", language=GERMAN, task=GRAMMAR),
|
89 |
+
Dataset(name="scala-nl", language=DUTCH, task=GRAMMAR),
|
90 |
+
Dataset(name="scala-en", language=ENGLISH, task=GRAMMAR),
|
91 |
+
Dataset(name="scandiqa-da", language=DANISH, task=QUESTION_ANSWERING),
|
92 |
+
Dataset(name="norquad", language=NORWEGIAN, task=QUESTION_ANSWERING),
|
93 |
+
Dataset(name="scandiqa-sv", language=SWEDISH, task=QUESTION_ANSWERING),
|
94 |
+
Dataset(name="nqii", language=ICELANDIC, task=QUESTION_ANSWERING),
|
95 |
+
Dataset(name="germanquad", language=GERMAN, task=QUESTION_ANSWERING),
|
96 |
+
Dataset(name="squad", language=ENGLISH, task=QUESTION_ANSWERING),
|
97 |
+
Dataset(name="squad-nl", language=DUTCH, task=QUESTION_ANSWERING),
|
98 |
+
Dataset(name="nordjylland-news", language=DANISH, task=SUMMARISATION),
|
99 |
+
Dataset(name="mlsum", language=GERMAN, task=SUMMARISATION),
|
100 |
+
Dataset(name="rrn", language=ICELANDIC, task=SUMMARISATION),
|
101 |
+
Dataset(name="no-sammendrag", language=NORWEGIAN, task=SUMMARISATION),
|
102 |
+
Dataset(name="wiki-lingua-nl", language=DUTCH, task=SUMMARISATION),
|
103 |
+
Dataset(name="swedn", language=SWEDISH, task=SUMMARISATION),
|
104 |
+
Dataset(name="cnn-dailymail", language=ENGLISH, task=SUMMARISATION),
|
105 |
+
Dataset(name="mmlu-da", language=DANISH, task=KNOWLEDGE),
|
106 |
+
Dataset(name="mmlu-no", language=NORWEGIAN, task=KNOWLEDGE),
|
107 |
+
Dataset(name="mmlu-sv", language=SWEDISH, task=KNOWLEDGE),
|
108 |
+
Dataset(name="mmlu-is", language=ICELANDIC, task=KNOWLEDGE),
|
109 |
+
Dataset(name="mmlu-de", language=GERMAN, task=KNOWLEDGE),
|
110 |
+
Dataset(name="mmlu-nl", language=DUTCH, task=KNOWLEDGE),
|
111 |
+
Dataset(name="mmlu", language=ENGLISH, task=KNOWLEDGE),
|
112 |
+
Dataset(name="arc-da", language=DANISH, task=KNOWLEDGE),
|
113 |
+
Dataset(name="arc-no", language=NORWEGIAN, task=KNOWLEDGE),
|
114 |
+
Dataset(name="arc-sv", language=SWEDISH, task=KNOWLEDGE),
|
115 |
+
Dataset(name="arc-is", language=ICELANDIC, task=KNOWLEDGE),
|
116 |
+
Dataset(name="arc-de", language=GERMAN, task=KNOWLEDGE),
|
117 |
+
Dataset(name="arc-nl", language=DUTCH, task=KNOWLEDGE),
|
118 |
+
Dataset(name="arc", language=ENGLISH, task=KNOWLEDGE),
|
119 |
+
Dataset(name="hellaswag-da", language=DANISH, task=REASONING),
|
120 |
+
Dataset(name="hellaswag-no", language=NORWEGIAN, task=REASONING),
|
121 |
+
Dataset(name="hellaswag-sv", language=SWEDISH, task=REASONING),
|
122 |
+
Dataset(name="hellaswag-is", language=ICELANDIC, task=REASONING),
|
123 |
+
Dataset(name="hellaswag-de", language=GERMAN, task=REASONING),
|
124 |
+
Dataset(name="hellaswag-nl", language=DUTCH, task=REASONING),
|
125 |
+
Dataset(name="hellaswag", language=ENGLISH, task=REASONING),
|
126 |
+
]
|
127 |
+
|
128 |
+
|
129 |
+
def main() -> None:
|
130 |
+
"""Produce a radial plot."""
|
131 |
+
|
132 |
+
# Download all the newest records
|
133 |
+
response = requests.get("https://scandeval.com/scandeval_benchmark_results.jsonl")
|
134 |
+
response.raise_for_status()
|
135 |
+
records = [
|
136 |
+
json.loads(dct_str)
|
137 |
+
for dct_str in response.text.split("\n")
|
138 |
+
if dct_str.strip("\n")
|
139 |
+
]
|
140 |
+
|
141 |
+
# Build a dictionary of languages -> results-dataframes, whose indices are the
|
142 |
+
# models and columns are the tasks.
|
143 |
+
results_dfs = dict()
|
144 |
+
for language in {dataset.language for dataset in DATASETS}:
|
145 |
+
possible_dataset_names = {
|
146 |
+
dataset.name for dataset in DATASETS if dataset.language == language
|
147 |
+
}
|
148 |
+
data_dict = defaultdict(dict)
|
149 |
+
for record in records:
|
150 |
+
model_name = record["model"]
|
151 |
+
dataset_name = record["dataset"]
|
152 |
+
if dataset_name in possible_dataset_names:
|
153 |
+
dataset = next(
|
154 |
+
dataset for dataset in DATASETS if dataset.name == dataset_name
|
155 |
+
)
|
156 |
+
results_dict = record['results']['total']
|
157 |
+
score = results_dict.get(
|
158 |
+
f"test_{dataset.task.metric}", results_dict.get(dataset.task.metric)
|
159 |
+
)
|
160 |
+
if dataset.task in data_dict[model_name]:
|
161 |
+
data_dict[model_name][dataset.task].append(score)
|
162 |
+
else:
|
163 |
+
data_dict[model_name][dataset.task] = [score]
|
164 |
+
results_df = pd.DataFrame(data_dict).T.map(
|
165 |
+
lambda list_or_nan:
|
166 |
+
np.mean(list_or_nan) if list_or_nan == list_or_nan else list_or_nan
|
167 |
+
).dropna()
|
168 |
+
if any(task not in results_df.columns for task in ALL_TASKS):
|
169 |
+
results_dfs[language] = pd.DataFrame()
|
170 |
+
else:
|
171 |
+
results_dfs[language] = results_df
|
172 |
+
|
173 |
+
all_languages: list[str | int | float | tuple[str, str | int | float]] | None = [
|
174 |
+
language.name for language in ALL_LANGUAGES.values()
|
175 |
+
]
|
176 |
+
all_models: list[str | int | float | tuple[str, str | int | float]] | None = list({
|
177 |
+
model_id
|
178 |
+
for df in results_dfs.values()
|
179 |
+
for model_id in df.index
|
180 |
+
})
|
181 |
+
|
182 |
+
with gr.Blocks() as demo:
|
183 |
+
gr.Markdown("# Radial Plot Generator")
|
184 |
+
gr.Markdown("### Select the models and languages to include in the plot")
|
185 |
+
with gr.Row():
|
186 |
+
with gr.Column():
|
187 |
+
language_names_dropdown = gr.Dropdown(
|
188 |
+
choices=all_languages,
|
189 |
+
multiselect=True,
|
190 |
+
label="Languages",
|
191 |
+
value=["Danish"],
|
192 |
+
interactive=True,
|
193 |
+
)
|
194 |
+
model_ids_dropdown = gr.Dropdown(
|
195 |
+
choices=all_models,
|
196 |
+
multiselect=True,
|
197 |
+
label="Models",
|
198 |
+
value=["gpt-3.5-turbo-0613", "mistralai/Mistral-7B-v0.1"],
|
199 |
+
interactive=True,
|
200 |
+
)
|
201 |
+
use_win_ratio_checkbox = gr.Checkbox(
|
202 |
+
label="Compare models with win ratios (as opposed to raw scores)",
|
203 |
+
value=True,
|
204 |
+
interactive=True,
|
205 |
+
)
|
206 |
+
with gr.Column():
|
207 |
+
plot = gr.Plot(
|
208 |
+
value=produce_radial_plot(
|
209 |
+
model_ids_dropdown.value,
|
210 |
+
language_names=language_names_dropdown.value,
|
211 |
+
use_win_ratio=use_win_ratio_checkbox.value,
|
212 |
+
results_dfs=results_dfs,
|
213 |
+
),
|
214 |
+
)
|
215 |
+
|
216 |
+
language_names_dropdown.change(
|
217 |
+
fn=partial(update_model_ids_dropdown, results_dfs=results_dfs),
|
218 |
+
inputs=language_names_dropdown,
|
219 |
+
outputs=model_ids_dropdown,
|
220 |
+
)
|
221 |
+
|
222 |
+
# Update plot when anything changes
|
223 |
+
language_names_dropdown.change(
|
224 |
+
fn=partial(produce_radial_plot, results_dfs=results_dfs),
|
225 |
+
inputs=[
|
226 |
+
model_ids_dropdown, language_names_dropdown, use_win_ratio_checkbox
|
227 |
+
],
|
228 |
+
outputs=plot,
|
229 |
+
)
|
230 |
+
model_ids_dropdown.change(
|
231 |
+
fn=partial(produce_radial_plot, results_dfs=results_dfs),
|
232 |
+
inputs=[
|
233 |
+
model_ids_dropdown, language_names_dropdown, use_win_ratio_checkbox
|
234 |
+
],
|
235 |
+
outputs=plot,
|
236 |
+
)
|
237 |
+
use_win_ratio_checkbox.change(
|
238 |
+
fn=partial(produce_radial_plot, results_dfs=results_dfs),
|
239 |
+
inputs=[
|
240 |
+
model_ids_dropdown, language_names_dropdown, use_win_ratio_checkbox
|
241 |
+
],
|
242 |
+
outputs=plot,
|
243 |
+
)
|
244 |
+
|
245 |
+
|
246 |
+
demo.launch()
|
247 |
+
|
248 |
+
|
249 |
+
def update_model_ids_dropdown(
|
250 |
+
language_names: list[str], results_dfs: dict[Language, pd.DataFrame] | None
|
251 |
+
) -> dict:
|
252 |
+
"""When the language names are updated, update the model ids dropdown.
|
253 |
+
|
254 |
+
Args:
|
255 |
+
language_names:
|
256 |
+
The names of the languages to include in the plot.
|
257 |
+
results_dfs:
|
258 |
+
The results dataframes for each language.
|
259 |
+
|
260 |
+
Returns:
|
261 |
+
The Gradio update to the model ids dropdown.
|
262 |
+
"""
|
263 |
+
if results_dfs is None or len(language_names) == 0:
|
264 |
+
return gr.update(choices=[], value=[])
|
265 |
+
|
266 |
+
filtered_models = list({
|
267 |
+
model_id
|
268 |
+
for language, df in results_dfs.items()
|
269 |
+
for model_id in df.index
|
270 |
+
if language.name in language_names
|
271 |
+
})
|
272 |
+
|
273 |
+
if len(filtered_models) == 0:
|
274 |
+
return gr.update(choices=[], value=[])
|
275 |
+
|
276 |
+
return gr.update(choices=filtered_models, value=filtered_models[0])
|
277 |
+
|
278 |
+
|
279 |
+
def produce_radial_plot(
|
280 |
+
model_ids: list[str],
|
281 |
+
language_names: list[str],
|
282 |
+
use_win_ratio: bool,
|
283 |
+
results_dfs: dict[Language, pd.DataFrame] | None
|
284 |
+
) -> go.Figure:
|
285 |
+
"""Produce a radial plot as a plotly figure.
|
286 |
+
|
287 |
+
Args:
|
288 |
+
model_ids:
|
289 |
+
The ids of the models to include in the plot.
|
290 |
+
language_names:
|
291 |
+
The names of the languages to include in the plot.
|
292 |
+
use_win_ratio:
|
293 |
+
Whether to use win ratios (as opposed to raw scores).
|
294 |
+
results_dfs:
|
295 |
+
The results dataframes for each language.
|
296 |
+
|
297 |
+
Returns:
|
298 |
+
A plotly figure.
|
299 |
+
"""
|
300 |
+
if results_dfs is None or len(language_names) == 0 or len(model_ids) == 0:
|
301 |
+
return go.Figure()
|
302 |
+
|
303 |
+
tasks = ALL_TASKS
|
304 |
+
languages = [ALL_LANGUAGES[language_name] for language_name in language_names]
|
305 |
+
|
306 |
+
results_dfs_filtered = {
|
307 |
+
language: df
|
308 |
+
for language, df in results_dfs.items()
|
309 |
+
if language.name in language_names
|
310 |
+
}
|
311 |
+
|
312 |
+
# Add all the evaluation results for each model
|
313 |
+
results: list[list[float]] = list()
|
314 |
+
for model_id in model_ids:
|
315 |
+
result_list = list()
|
316 |
+
for task in tasks:
|
317 |
+
win_ratios = list()
|
318 |
+
scores = list()
|
319 |
+
for language in languages:
|
320 |
+
score = results_dfs_filtered[language].loc[model_id][task]
|
321 |
+
win_ratio = np.mean([
|
322 |
+
score >= other_score
|
323 |
+
for other_score in results_dfs_filtered[language][task].dropna()
|
324 |
+
])
|
325 |
+
win_ratios.append(win_ratio)
|
326 |
+
scores.append(score)
|
327 |
+
if use_win_ratio:
|
328 |
+
result_list.append(np.mean(win_ratios))
|
329 |
+
else:
|
330 |
+
result_list.append(np.mean(scores))
|
331 |
+
results.append(result_list)
|
332 |
+
|
333 |
+
# Sort the results to avoid misleading radial plots
|
334 |
+
model_idx_with_highest_variance = np.argmax(
|
335 |
+
[np.std(result_list) for result_list in results]
|
336 |
+
)
|
337 |
+
sorted_idxs = np.argsort(results[model_idx_with_highest_variance])
|
338 |
+
results = [np.asarray(result_list)[sorted_idxs] for result_list in results]
|
339 |
+
tasks = np.asarray(tasks)[sorted_idxs]
|
340 |
+
|
341 |
+
# Add the results to a plotly figure
|
342 |
+
fig = go.Figure()
|
343 |
+
for model_id, result_list in zip(model_ids, results):
|
344 |
+
fig.add_trace(go.Scatterpolar(
|
345 |
+
r=result_list,
|
346 |
+
theta=[task.name for task in tasks],
|
347 |
+
fill='toself',
|
348 |
+
name=model_id,
|
349 |
+
))
|
350 |
+
|
351 |
+
languages_str = ""
|
352 |
+
if len(languages) > 1:
|
353 |
+
languages_str = ", ".join([language.name for language in languages[:-1]])
|
354 |
+
languages_str += " and "
|
355 |
+
languages_str += languages[-1].name
|
356 |
+
|
357 |
+
if use_win_ratio:
|
358 |
+
title = f'Win Ratio on on {languages_str} Language Tasks'
|
359 |
+
else:
|
360 |
+
title = f'LLM Score on on {languages_str} Language Tasks'
|
361 |
+
|
362 |
+
# Builds the radial plot from the results
|
363 |
+
fig.update_layout(
|
364 |
+
polar=dict(radialaxis=dict(visible=True)), showlegend=True, title=title
|
365 |
+
)
|
366 |
+
|
367 |
+
return fig
|
368 |
+
|
369 |
+
if __name__ == "__main__":
|
370 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
aiofiles==23.2.1
|
2 |
+
altair==5.2.0
|
3 |
+
annotated-types==0.6.0
|
4 |
+
anyio==4.2.0
|
5 |
+
attrs==23.2.0
|
6 |
+
certifi==2023.11.17
|
7 |
+
charset-normalizer==3.3.2
|
8 |
+
click==8.1.7
|
9 |
+
colorama==0.4.6
|
10 |
+
contourpy==1.2.0
|
11 |
+
cycler==0.12.1
|
12 |
+
exceptiongroup==1.2.0
|
13 |
+
fastapi==0.109.0
|
14 |
+
ffmpy==0.3.1
|
15 |
+
filelock==3.13.1
|
16 |
+
fonttools==4.47.2
|
17 |
+
fsspec==2023.12.2
|
18 |
+
gradio==4.15.0
|
19 |
+
gradio_client==0.8.1
|
20 |
+
h11==0.14.0
|
21 |
+
httpcore==1.0.2
|
22 |
+
httpx==0.26.0
|
23 |
+
huggingface-hub==0.20.3
|
24 |
+
idna==3.6
|
25 |
+
importlib-resources==6.1.1
|
26 |
+
Jinja2==3.1.3
|
27 |
+
jsonschema==4.21.1
|
28 |
+
jsonschema-specifications==2023.12.1
|
29 |
+
kiwisolver==1.4.5
|
30 |
+
markdown-it-py==3.0.0
|
31 |
+
MarkupSafe==2.1.4
|
32 |
+
matplotlib==3.8.2
|
33 |
+
mdurl==0.1.2
|
34 |
+
numpy==1.26.3
|
35 |
+
orjson==3.9.12
|
36 |
+
packaging==23.2
|
37 |
+
pandas==2.2.0
|
38 |
+
pillow==10.2.0
|
39 |
+
plotly==5.18.0
|
40 |
+
pyarrow==15.0.0
|
41 |
+
pydantic==2.5.3
|
42 |
+
pydantic_core==2.14.6
|
43 |
+
pydub==0.25.1
|
44 |
+
Pygments==2.17.2
|
45 |
+
pyparsing==3.1.1
|
46 |
+
python-dateutil==2.8.2
|
47 |
+
python-multipart==0.0.6
|
48 |
+
pytz==2023.3.post1
|
49 |
+
PyYAML==6.0.1
|
50 |
+
referencing==0.32.1
|
51 |
+
requests==2.31.0
|
52 |
+
rich==13.7.0
|
53 |
+
rpds-py==0.17.1
|
54 |
+
ruff==0.1.14
|
55 |
+
semantic-version==2.10.0
|
56 |
+
shellingham==1.5.4
|
57 |
+
six==1.16.0
|
58 |
+
sniffio==1.3.0
|
59 |
+
starlette==0.35.1
|
60 |
+
tenacity==8.2.3
|
61 |
+
tomlkit==0.12.0
|
62 |
+
toolz==0.12.1
|
63 |
+
tqdm==4.66.1
|
64 |
+
typer==0.9.0
|
65 |
+
typing_extensions==4.9.0
|
66 |
+
tzdata==2023.4
|
67 |
+
urllib3==2.1.0
|
68 |
+
uvicorn==0.27.0
|
69 |
+
websockets==11.0.3
|