saattrupdan
commited on
Commit
·
3baf99a
1
Parent(s):
8b5abf6
feat: Update with new results every 30 mins
Browse files
app.py
CHANGED
@@ -10,6 +10,15 @@ from pydantic import BaseModel
|
|
10 |
import gradio as gr
|
11 |
import requests
|
12 |
import random
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
|
15 |
class Task(BaseModel):
|
@@ -130,46 +139,9 @@ DATASETS = [
|
|
130 |
def main() -> None:
|
131 |
"""Produce a radial plot."""
|
132 |
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
records = [
|
137 |
-
json.loads(dct_str)
|
138 |
-
for dct_str in response.text.split("\n")
|
139 |
-
if dct_str.strip("\n")
|
140 |
-
]
|
141 |
-
|
142 |
-
# Build a dictionary of languages -> results-dataframes, whose indices are the
|
143 |
-
# models and columns are the tasks.
|
144 |
-
results_dfs = dict()
|
145 |
-
for language in {dataset.language for dataset in DATASETS}:
|
146 |
-
possible_dataset_names = {
|
147 |
-
dataset.name for dataset in DATASETS if dataset.language == language
|
148 |
-
}
|
149 |
-
data_dict = defaultdict(dict)
|
150 |
-
for record in records:
|
151 |
-
model_name = record["model"]
|
152 |
-
dataset_name = record["dataset"]
|
153 |
-
if dataset_name in possible_dataset_names:
|
154 |
-
dataset = next(
|
155 |
-
dataset for dataset in DATASETS if dataset.name == dataset_name
|
156 |
-
)
|
157 |
-
results_dict = record['results']['total']
|
158 |
-
score = results_dict.get(
|
159 |
-
f"test_{dataset.task.metric}", results_dict.get(dataset.task.metric)
|
160 |
-
)
|
161 |
-
if dataset.task in data_dict[model_name]:
|
162 |
-
data_dict[model_name][dataset.task].append(score)
|
163 |
-
else:
|
164 |
-
data_dict[model_name][dataset.task] = [score]
|
165 |
-
results_df = pd.DataFrame(data_dict).T.map(
|
166 |
-
lambda list_or_nan:
|
167 |
-
np.mean(list_or_nan) if list_or_nan == list_or_nan else list_or_nan
|
168 |
-
).dropna()
|
169 |
-
if any(task not in results_df.columns for task in ALL_TASKS):
|
170 |
-
results_dfs[language] = pd.DataFrame()
|
171 |
-
else:
|
172 |
-
results_dfs[language] = results_df
|
173 |
|
174 |
all_languages: list[str | int | float | tuple[str, str | int | float]] | None = [
|
175 |
language.name for language in ALL_LANGUAGES.values()
|
@@ -251,7 +223,6 @@ def main() -> None:
|
|
251 |
outputs=plot,
|
252 |
)
|
253 |
|
254 |
-
|
255 |
demo.launch()
|
256 |
|
257 |
|
@@ -272,6 +243,8 @@ def update_model_ids_dropdown(
|
|
272 |
if results_dfs is None or len(language_names) == 0:
|
273 |
return gr.update(choices=[], value=[])
|
274 |
|
|
|
|
|
275 |
filtered_results_dfs = {
|
276 |
language: df
|
277 |
for language, df in results_dfs.items()
|
@@ -300,7 +273,7 @@ def produce_radial_plot(
|
|
300 |
model_ids: list[str],
|
301 |
language_names: list[str],
|
302 |
use_win_ratio: bool,
|
303 |
-
results_dfs: dict[Language, pd.DataFrame] | None
|
304 |
) -> go.Figure:
|
305 |
"""Produce a radial plot as a plotly figure.
|
306 |
|
@@ -320,6 +293,17 @@ def produce_radial_plot(
|
|
320 |
if results_dfs is None or len(language_names) == 0 or len(model_ids) == 0:
|
321 |
return go.Figure()
|
322 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
323 |
tasks = ALL_TASKS
|
324 |
languages = [ALL_LANGUAGES[language_name] for language_name in language_names]
|
325 |
|
@@ -386,7 +370,62 @@ def produce_radial_plot(
|
|
386 |
polar=dict(radialaxis=dict(visible=True)), showlegend=True, title=title
|
387 |
)
|
388 |
|
|
|
|
|
389 |
return fig
|
390 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
391 |
if __name__ == "__main__":
|
392 |
main()
|
|
|
10 |
import gradio as gr
|
11 |
import requests
|
12 |
import random
|
13 |
+
import logging
|
14 |
+
import datetime as dt
|
15 |
+
|
16 |
+
|
17 |
+
logging.basicConfig(level=logging.INFO)
|
18 |
+
logger = logging.getLogger("radial_plot_generator")
|
19 |
+
|
20 |
+
|
21 |
+
UPDATE_FREQUENCY_MINUTES = 30
|
22 |
|
23 |
|
24 |
class Task(BaseModel):
|
|
|
139 |
def main() -> None:
|
140 |
"""Produce a radial plot."""
|
141 |
|
142 |
+
global last_fetch
|
143 |
+
results_dfs = fetch_results()
|
144 |
+
last_fetch = dt.datetime.now()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
|
146 |
all_languages: list[str | int | float | tuple[str, str | int | float]] | None = [
|
147 |
language.name for language in ALL_LANGUAGES.values()
|
|
|
223 |
outputs=plot,
|
224 |
)
|
225 |
|
|
|
226 |
demo.launch()
|
227 |
|
228 |
|
|
|
243 |
if results_dfs is None or len(language_names) == 0:
|
244 |
return gr.update(choices=[], value=[])
|
245 |
|
246 |
+
# Download the newest records if it has been more than 5 minutes since the last
|
247 |
+
|
248 |
filtered_results_dfs = {
|
249 |
language: df
|
250 |
for language, df in results_dfs.items()
|
|
|
273 |
model_ids: list[str],
|
274 |
language_names: list[str],
|
275 |
use_win_ratio: bool,
|
276 |
+
results_dfs: dict[Language, pd.DataFrame] | None,
|
277 |
) -> go.Figure:
|
278 |
"""Produce a radial plot as a plotly figure.
|
279 |
|
|
|
293 |
if results_dfs is None or len(language_names) == 0 or len(model_ids) == 0:
|
294 |
return go.Figure()
|
295 |
|
296 |
+
global last_fetch
|
297 |
+
minutes_since_last_fetch = (dt.datetime.now() - last_fetch).total_seconds() / 60
|
298 |
+
if minutes_since_last_fetch > UPDATE_FREQUENCY_MINUTES:
|
299 |
+
results_dfs = fetch_results()
|
300 |
+
last_fetch = dt.datetime.now()
|
301 |
+
|
302 |
+
logger.info(
|
303 |
+
f"Producing radial plot for models {model_ids!r} on languages "
|
304 |
+
f"{language_names!r}..."
|
305 |
+
)
|
306 |
+
|
307 |
tasks = ALL_TASKS
|
308 |
languages = [ALL_LANGUAGES[language_name] for language_name in language_names]
|
309 |
|
|
|
370 |
polar=dict(radialaxis=dict(visible=True)), showlegend=True, title=title
|
371 |
)
|
372 |
|
373 |
+
logger.info("Successfully produced radial plot.")
|
374 |
+
|
375 |
return fig
|
376 |
|
377 |
+
def fetch_results() -> dict[Language, pd.DataFrame]:
|
378 |
+
"""Fetch the results from the ScandEval benchmark.
|
379 |
+
|
380 |
+
Returns:
|
381 |
+
A dictionary of languages -> results-dataframes, whose indices are the
|
382 |
+
models and columns are the tasks.
|
383 |
+
"""
|
384 |
+
logger.info("Fetching results from ScandEval benchmark...")
|
385 |
+
|
386 |
+
response = requests.get("https://scandeval.com/scandeval_benchmark_results.jsonl")
|
387 |
+
response.raise_for_status()
|
388 |
+
records = [
|
389 |
+
json.loads(dct_str)
|
390 |
+
for dct_str in response.text.split("\n")
|
391 |
+
if dct_str.strip("\n")
|
392 |
+
]
|
393 |
+
|
394 |
+
# Build a dictionary of languages -> results-dataframes, whose indices are the
|
395 |
+
# models and columns are the tasks.
|
396 |
+
results_dfs = dict()
|
397 |
+
for language in {dataset.language for dataset in DATASETS}:
|
398 |
+
possible_dataset_names = {
|
399 |
+
dataset.name for dataset in DATASETS if dataset.language == language
|
400 |
+
}
|
401 |
+
data_dict = defaultdict(dict)
|
402 |
+
for record in records:
|
403 |
+
model_name = record["model"]
|
404 |
+
dataset_name = record["dataset"]
|
405 |
+
if dataset_name in possible_dataset_names:
|
406 |
+
dataset = next(
|
407 |
+
dataset for dataset in DATASETS if dataset.name == dataset_name
|
408 |
+
)
|
409 |
+
results_dict = record['results']['total']
|
410 |
+
score = results_dict.get(
|
411 |
+
f"test_{dataset.task.metric}", results_dict.get(dataset.task.metric)
|
412 |
+
)
|
413 |
+
if dataset.task in data_dict[model_name]:
|
414 |
+
data_dict[model_name][dataset.task].append(score)
|
415 |
+
else:
|
416 |
+
data_dict[model_name][dataset.task] = [score]
|
417 |
+
results_df = pd.DataFrame(data_dict).T.map(
|
418 |
+
lambda list_or_nan:
|
419 |
+
np.mean(list_or_nan) if list_or_nan == list_or_nan else list_or_nan
|
420 |
+
).dropna()
|
421 |
+
if any(task not in results_df.columns for task in ALL_TASKS):
|
422 |
+
results_dfs[language] = pd.DataFrame()
|
423 |
+
else:
|
424 |
+
results_dfs[language] = results_df
|
425 |
+
|
426 |
+
logger.info("Successfully fetched results from ScandEval benchmark.")
|
427 |
+
|
428 |
+
return results_dfs
|
429 |
+
|
430 |
if __name__ == "__main__":
|
431 |
main()
|