File size: 9,442 Bytes
91feea3
 
 
 
 
 
 
 
 
181494a
91feea3
 
 
 
 
 
 
 
 
181494a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91feea3
864967c
91feea3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
#!/usr/bin/env python
# -*- coding: utf-8 -*-

import gradio as gr
#from transformers import pipeline 
import torch
from utils import *
from presets import *


######################################################################
#Modelle und Tokenizer

#Alternativ mit beliebigen Modellen:
base_model = "project-baize/baize-v2-7b"  #load_8bit = False (in load_tokenizer_and_model)
#base_model = "TheBloke/airoboros-13B-HF"  #load_8bit = False (in load_tokenizer_and_model)
#base_model = "EleutherAI/gpt-neo-1.3B"    #load_8bit = False (in load_tokenizer_and_model)
#base_model = "TheBloke/airoboros-13B-HF"   #load_8bit = True
tokenizer,model,device = load_tokenizer_and_model(base_model,False)
dataset_neu = daten_laden("alexkueck/tis")

###################################
#Vorbereiten für das training der neuen Daten
#Datensets in den Tokenizer schieben...
def tokenize_function(examples):
    return tokenizer(examples["text"])


#alles zusammen auf das neue datenset anwenden - batched = True und 4 Prozesse, um die Berechnung zu beschleunigen. Die "text" - Spalte braucht man anschließend nicht mehr, daher weglassen.
tokenized_datasets = dataset_neu.map(tokenize_function, batched=True, num_proc=4, remove_columns=["text"])

#den Text nun zusammenführen (concatenieren) und anschließend in kleine Häppchen aufteilen (block_size=128), die verarbeitet werden können
#das macht die map-Funktion und das Attribut batched = True
#man könnte das weglassen, wenn jeder Satz einzeln gegeben wurde in den Texten...
#eigentlich nimmt man als block_size die max. Länge in der das Model trainiert wurde -> könnte aber zu groß sein für den RAm der GPU , daher hier 128 gewählt
# block_size = tokenizer.model_max_length
block_size = 128




########################################################################
#Chat KI nutzen, um Text zu generieren...
def predict(text,
            chatbotGr,
            history,
            top_p,
            temperature,
            max_length_tokens,
            max_context_length_tokens,):
    if text=="":
        yield chatbotGr,history,"Empty context."
        return 
    try:
        model
    except:
        yield [[text,"No Model Found"]],[],"No Model Found"
        return

    inputs = generate_prompt_with_history(text,history,tokenizer,max_length=max_context_length_tokens)
    if inputs is None:
        yield chatbotGr,history,"Input too long."
        return 
    else:
        prompt,inputs=inputs
        begin_length = len(prompt)
        
    input_ids = inputs["input_ids"][:,-max_context_length_tokens:].to(device)
    torch.cuda.empty_cache()

    #torch.no_grad() bedeutet, dass für die betreffenden tensoren keine Ableitungen berechnet werden bei der backpropagation 
    #hier soll das NN ja auch nicht geändert werden 8backprop ist nicht nötig), da es um interference-prompts geht!
    with torch.no_grad():
        #die vergangenen prompts werden alle als Tupel in history abgelegt sortiert nach 'Human' und 'AI'- dass sind daher auch die stop-words, die den jeweils nächsten Eintrag kennzeichnen        
        for x in greedy_search(input_ids,model,tokenizer,stop_words=["[|Human|]", "[|AI|]"],max_length=max_length_tokens,temperature=temperature,top_p=top_p):
            if is_stop_word_or_prefix(x,["[|Human|]", "[|AI|]"]) is False:
                if "[|Human|]" in x:
                    x = x[:x.index("[|Human|]")].strip()
                if "[|AI|]" in x:
                    x = x[:x.index("[|AI|]")].strip() 
                x = x.strip()   
                a, b=   [[y[0],convert_to_markdown(y[1])] for y in history]+[[text, convert_to_markdown(x)]],history + [[text,x]]
                yield a, b, "Generating..."
            if shared_state.interrupted:
                shared_state.recover()
                try:
                    yield a, b, "Stop: Success"
                    return
                except:
                    pass
    del input_ids
    gc.collect()
    torch.cuda.empty_cache()
    
    try:
        yield a,b,"Generate: Success"
    except:
        pass


def reset_chat():
    #id_new = chatbot.new_conversation()
    #chatbot.change_conversation(id_new)
    reset_textbox()
    
    
##########################################################
#Übersetzungs Ki nutzen
def translate():
    return "Kommt noch!"
    
#Programmcode KI
def coding():
    return "Kommt noch!"

#######################################################################
#Darstellung mit Gradio

with open("custom.css", "r", encoding="utf-8") as f:
    customCSS = f.read()
    
with gr.Blocks(theme=small_and_beautiful_theme) as demo:
    history = gr.State([])
    user_question = gr.State("")
    gr.Markdown("KIs am LI - wähle aus, was du bzgl. KI-Bots ausprobieren möchtest!")
    with gr.Tabs():
        with gr.TabItem("LI-Chat"):
            with gr.Row():
                gr.HTML(title)
                status_display = gr.Markdown("Erfolg", elem_id="status_display")
            gr.Markdown(description_top)
            with gr.Row(scale=1).style(equal_height=True):
                with gr.Column(scale=5):
                    with gr.Row(scale=1):
                        chatbotGr = gr.Chatbot(elem_id="LI_chatbot").style(height="100%")
                    with gr.Row(scale=1):
                        with gr.Column(scale=12):
                            user_input = gr.Textbox(
                                show_label=False, placeholder="Gib deinen Text / Frage ein."
                            ).style(container=False)
                        with gr.Column(min_width=100, scale=1):
                            submitBtn = gr.Button("Absenden")
                        with gr.Column(min_width=100, scale=1):
                            cancelBtn = gr.Button("Stoppen")
                    with gr.Row(scale=1):
                        emptyBtn = gr.Button(
                            "🧹 Neuer Chat",
                        )
                with gr.Column():
                    with gr.Column(min_width=50, scale=1):
                        with gr.Tab(label="Parameter zum Model"):
                            gr.Markdown("# Parameters")
                            top_p = gr.Slider(
                                minimum=-0,
                                maximum=1.0,
                                value=0.95,
                                step=0.05,
                                interactive=True,
                                label="Top-p",
                            )
                            temperature = gr.Slider(
                                minimum=0.1,
                                maximum=2.0,
                                value=1,
                                step=0.1,
                                interactive=True,
                                label="Temperature",
                            )
                            max_length_tokens = gr.Slider(
                                minimum=0,
                                maximum=512,
                                value=512,
                                step=8,
                                interactive=True,
                                label="Max Generation Tokens",
                            )
                            max_context_length_tokens = gr.Slider(
                                minimum=0,
                                maximum=4096,
                                value=2048,
                                step=128,
                                interactive=True,
                                label="Max History Tokens",
                            )
            gr.Markdown(description)

        with gr.TabItem("Übersetzungen"):
            with gr.Row():
                    gr.Textbox(
                                show_label=False, placeholder="Ist noch in Arbeit..."
                            ).style(container=False)
        with gr.TabItem("Code-Generierungen"):
            with gr.Row():
                    gr.Textbox(
                                show_label=False, placeholder="Ist noch in Arbeit..."
                            ).style(container=False)
    
    predict_args = dict(
        fn=predict,
        inputs=[
            user_question,
            chatbotGr,
            history,
            top_p,
            temperature,
            max_length_tokens,
            max_context_length_tokens,
        ],
        outputs=[chatbotGr, history, status_display],
        show_progress=True,
    )
        
    #neuer Chat
    reset_args = dict(
        #fn=reset_chat, inputs=[], outputs=[user_input, status_display]
        fn=reset_textbox, inputs=[], outputs=[user_input, status_display]
    )
            
    # Chatbot
    transfer_input_args = dict(
        fn=transfer_input, inputs=[user_input], outputs=[user_question, user_input, submitBtn], show_progress=True
    )
        
    #Listener auf Start-Click auf Button oder Return
    predict_event1 = user_input.submit(**transfer_input_args).then(**predict_args)
    predict_event2 = submitBtn.click(**transfer_input_args).then(**predict_args)
        
    #Listener, Wenn reset...
    emptyBtn.click(
        reset_state,
        outputs=[chatbotGr, history, status_display],
        show_progress=True,
    )
    emptyBtn.click(**reset_args)

demo.title = "LI Chat"
#demo.queue(concurrency_count=1).launch(share=True) 
demo.queue(concurrency_count=1).launch(debug=True)