alexkueck commited on
Commit
378e7cb
·
1 Parent(s): b6fc2f9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -1
app.py CHANGED
@@ -55,6 +55,19 @@ def compute_metrics(eval_pred):
55
  #Before passing your predictions to compute, you need to convert the predictions to logits (remember all Transformers models return logits):
56
  return metric.compute(predictions=predictions, references=labels)
57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58
 
59
  ###################################################################################
60
  ###################################################################################
@@ -130,7 +143,9 @@ training_args = TrainingArguments(
130
  overwrite_output_dir = 'True',
131
  per_device_train_batch_size=batch_size, #batch_size = 2 for full training
132
  per_device_eval_batch_size=batch_size,
133
- evaluation_strategy = "epoch", #oder steps
 
 
134
  learning_rate=2e-5,
135
  weight_decay=0.01,
136
  save_total_limit = 2,
@@ -191,6 +206,7 @@ print("done")
191
  #######################################
192
  # Load model
193
  print("load model_neu")
 
194
  model_name_neu = "alexkueck/test-tis-1"
195
  #model_neu = trainer.load("test-tis-1")
196
 
 
55
  #Before passing your predictions to compute, you need to convert the predictions to logits (remember all Transformers models return logits):
56
  return metric.compute(predictions=predictions, references=labels)
57
 
58
+ #oder mit allen Metriken
59
+ def compute_metrics_alle(eval_pred):
60
+ metrics = ["accuracy", "recall", "precision", "f1"] #List of metrics to return
61
+ metric={}
62
+ for met in metrics:
63
+ metric[met] = load_metric(met)
64
+ logits, labels = eval_pred
65
+ predictions = np.argmax(logits, axis=-1)
66
+ metric_res={}
67
+ for met in metrics:
68
+ metric_res[met]=metric[met].compute(predictions=predictions, references=labels)[met]
69
+ return metric_res
70
+
71
 
72
  ###################################################################################
73
  ###################################################################################
 
143
  overwrite_output_dir = 'True',
144
  per_device_train_batch_size=batch_size, #batch_size = 2 for full training
145
  per_device_eval_batch_size=batch_size,
146
+ evaluation_strategy = "steps", #oder
147
+ logging_strategy="steps", #oder epoch
148
+ logging_steps=10,
149
  learning_rate=2e-5,
150
  weight_decay=0.01,
151
  save_total_limit = 2,
 
206
  #######################################
207
  # Load model
208
  print("load model_neu")
209
+ login(token=os.environ["HF_ACCESS_TOKEN"])
210
  model_name_neu = "alexkueck/test-tis-1"
211
  #model_neu = trainer.load("test-tis-1")
212