Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -55,6 +55,19 @@ def compute_metrics(eval_pred):
|
|
55 |
#Before passing your predictions to compute, you need to convert the predictions to logits (remember all Transformers models return logits):
|
56 |
return metric.compute(predictions=predictions, references=labels)
|
57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
###################################################################################
|
60 |
###################################################################################
|
@@ -130,7 +143,9 @@ training_args = TrainingArguments(
|
|
130 |
overwrite_output_dir = 'True',
|
131 |
per_device_train_batch_size=batch_size, #batch_size = 2 for full training
|
132 |
per_device_eval_batch_size=batch_size,
|
133 |
-
evaluation_strategy = "
|
|
|
|
|
134 |
learning_rate=2e-5,
|
135 |
weight_decay=0.01,
|
136 |
save_total_limit = 2,
|
@@ -191,6 +206,7 @@ print("done")
|
|
191 |
#######################################
|
192 |
# Load model
|
193 |
print("load model_neu")
|
|
|
194 |
model_name_neu = "alexkueck/test-tis-1"
|
195 |
#model_neu = trainer.load("test-tis-1")
|
196 |
|
|
|
55 |
#Before passing your predictions to compute, you need to convert the predictions to logits (remember all Transformers models return logits):
|
56 |
return metric.compute(predictions=predictions, references=labels)
|
57 |
|
58 |
+
#oder mit allen Metriken
|
59 |
+
def compute_metrics_alle(eval_pred):
|
60 |
+
metrics = ["accuracy", "recall", "precision", "f1"] #List of metrics to return
|
61 |
+
metric={}
|
62 |
+
for met in metrics:
|
63 |
+
metric[met] = load_metric(met)
|
64 |
+
logits, labels = eval_pred
|
65 |
+
predictions = np.argmax(logits, axis=-1)
|
66 |
+
metric_res={}
|
67 |
+
for met in metrics:
|
68 |
+
metric_res[met]=metric[met].compute(predictions=predictions, references=labels)[met]
|
69 |
+
return metric_res
|
70 |
+
|
71 |
|
72 |
###################################################################################
|
73 |
###################################################################################
|
|
|
143 |
overwrite_output_dir = 'True',
|
144 |
per_device_train_batch_size=batch_size, #batch_size = 2 for full training
|
145 |
per_device_eval_batch_size=batch_size,
|
146 |
+
evaluation_strategy = "steps", #oder
|
147 |
+
logging_strategy="steps", #oder epoch
|
148 |
+
logging_steps=10,
|
149 |
learning_rate=2e-5,
|
150 |
weight_decay=0.01,
|
151 |
save_total_limit = 2,
|
|
|
206 |
#######################################
|
207 |
# Load model
|
208 |
print("load model_neu")
|
209 |
+
login(token=os.environ["HF_ACCESS_TOKEN"])
|
210 |
model_name_neu = "alexkueck/test-tis-1"
|
211 |
#model_neu = trainer.load("test-tis-1")
|
212 |
|