Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -8,6 +8,31 @@ from utils import *
|
|
8 |
from presets import *
|
9 |
from transformers import Trainer, TrainingArguments
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
######################################################################
|
13 |
#Modelle und Tokenizer
|
@@ -80,30 +105,6 @@ def trainieren_neu():
|
|
80 |
|
81 |
|
82 |
|
83 |
-
#####################################################
|
84 |
-
#Hilfsfunktionen für das training
|
85 |
-
#####################################################
|
86 |
-
#Datensets in den Tokenizer schieben...
|
87 |
-
def tokenize_function(examples):
|
88 |
-
return tokenizer(examples["text"])
|
89 |
-
|
90 |
-
|
91 |
-
#Funktion, die den gegebenen Text aus dem Datenset gruppiert
|
92 |
-
def group_texts(examples):
|
93 |
-
# Concatenate all texts.
|
94 |
-
concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()}
|
95 |
-
total_length = len(concatenated_examples[list(examples.keys())[0]])
|
96 |
-
# We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
|
97 |
-
# customize this part to your needs.
|
98 |
-
total_length = (total_length // block_size) * block_size
|
99 |
-
# Split by chunks of max_len.
|
100 |
-
result = {
|
101 |
-
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
|
102 |
-
for k, t in concatenated_examples.items()
|
103 |
-
}
|
104 |
-
result["labels"] = result["input_ids"].copy()
|
105 |
-
return result
|
106 |
-
|
107 |
|
108 |
|
109 |
|
|
|
8 |
from presets import *
|
9 |
from transformers import Trainer, TrainingArguments
|
10 |
|
11 |
+
#####################################################
|
12 |
+
#Hilfsfunktionen für das training
|
13 |
+
#####################################################
|
14 |
+
#Datensets in den Tokenizer schieben...
|
15 |
+
def tokenize_function(examples):
|
16 |
+
return tokenizer(examples["text"])
|
17 |
+
|
18 |
+
|
19 |
+
#Funktion, die den gegebenen Text aus dem Datenset gruppiert
|
20 |
+
def group_texts(examples):
|
21 |
+
# Concatenate all texts.
|
22 |
+
concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()}
|
23 |
+
total_length = len(concatenated_examples[list(examples.keys())[0]])
|
24 |
+
# We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
|
25 |
+
# customize this part to your needs.
|
26 |
+
total_length = (total_length // block_size) * block_size
|
27 |
+
# Split by chunks of max_len.
|
28 |
+
result = {
|
29 |
+
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
|
30 |
+
for k, t in concatenated_examples.items()
|
31 |
+
}
|
32 |
+
result["labels"] = result["input_ids"].copy()
|
33 |
+
return result
|
34 |
+
|
35 |
+
|
36 |
|
37 |
######################################################################
|
38 |
#Modelle und Tokenizer
|
|
|
105 |
|
106 |
|
107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
|
110 |
|