Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -83,12 +83,15 @@ def generate_response(prompt, model, tokenizer):
|
|
83 |
|
84 |
#Funktion, die der trainer braucht, um das Training zu evaluieren - mit einer Metrik
|
85 |
def compute_metrics(eval_pred):
|
|
|
86 |
logits, labels = eval_pred
|
87 |
predictions = np.argmax(logits, axis=-1)
|
88 |
#Call compute on metric to calculate the accuracy of your predictions.
|
89 |
#Before passing your predictions to compute, you need to convert the predictions to logits (remember all Transformers models return logits):
|
90 |
return metric.compute(predictions=predictions, references=labels)
|
91 |
|
|
|
|
|
92 |
#oder mit allen Metriken
|
93 |
def compute_metrics_alle(eval_pred):
|
94 |
metrics = ["accuracy", "recall", "precision", "f1"] #List of metrics to return
|
@@ -184,7 +187,12 @@ lm_datasets = tokenized_datasets.map(
|
|
184 |
batch_size=1000,
|
185 |
num_proc=4,
|
186 |
)
|
187 |
-
|
|
|
|
|
|
|
|
|
|
|
188 |
#die Daten wurden nun "gereinigt" und für das Model vorbereitet.
|
189 |
#z.B. anschauen mit: tokenizer.decode(lm_datasets["train"][1]["input_ids"])
|
190 |
|
@@ -210,6 +218,8 @@ training_args = TrainingArguments(
|
|
210 |
overwrite_output_dir = 'True',
|
211 |
per_device_train_batch_size=batch_size, #batch_size = 2 for full training
|
212 |
per_device_eval_batch_size=batch_size,
|
|
|
|
|
213 |
evaluation_strategy = "epoch", #oder steps
|
214 |
logging_strategy="epoch", #oder steps
|
215 |
#logging_steps=10,
|
@@ -221,18 +231,20 @@ training_args = TrainingArguments(
|
|
221 |
#logging_steps=2, # set to 1000 for full training
|
222 |
#save_steps=16, # set to 500 for full training
|
223 |
#eval_steps=4, # set to 8000 for full training
|
224 |
-
|
225 |
#max_steps=16, # delete for full training
|
226 |
# overwrite_output_dir=True,
|
227 |
#save_total_limit=1,
|
228 |
#fp16=True,
|
229 |
-
|
230 |
optim="adamw_torch",
|
231 |
#load_best_model_at_end=False,
|
232 |
#load_best_model_at_end=True
|
233 |
#push_to_hub=True,
|
234 |
)
|
235 |
|
|
|
|
|
236 |
#Trainer zusammenstellen
|
237 |
print ("################################")
|
238 |
print ("trainer")
|
@@ -242,6 +254,7 @@ trainer = Trainer(
|
|
242 |
args=training_args,
|
243 |
train_dataset=lm_datasets["train"],
|
244 |
eval_dataset=lm_datasets["test"],
|
|
|
245 |
#tokenizer=tokenizer,
|
246 |
compute_metrics=compute_metrics,
|
247 |
)
|
@@ -324,6 +337,12 @@ print("Evaluate:")
|
|
324 |
trainer.evaluate(eval_dataset=lm_datasets["test"])
|
325 |
print("Done Eval")
|
326 |
|
|
|
|
|
|
|
|
|
|
|
|
|
327 |
###################################################
|
328 |
#Save to a place -????? Where????
|
329 |
#print("Save to ???")
|
@@ -334,7 +353,7 @@ print("Done Eval")
|
|
334 |
#####################################
|
335 |
#Push to Hub
|
336 |
print ("################################")
|
337 |
-
print("push to hub")
|
338 |
print("push to hub - Model")
|
339 |
login(token=os.environ["HF_WRITE_TOKEN"])
|
340 |
trainer.push_to_hub("alexkueck/li-tis-tuned-2")
|
|
|
83 |
|
84 |
#Funktion, die der trainer braucht, um das Training zu evaluieren - mit einer Metrik
|
85 |
def compute_metrics(eval_pred):
|
86 |
+
metric = evaluate.load("glue", "mrpc")
|
87 |
logits, labels = eval_pred
|
88 |
predictions = np.argmax(logits, axis=-1)
|
89 |
#Call compute on metric to calculate the accuracy of your predictions.
|
90 |
#Before passing your predictions to compute, you need to convert the predictions to logits (remember all Transformers models return logits):
|
91 |
return metric.compute(predictions=predictions, references=labels)
|
92 |
|
93 |
+
|
94 |
+
|
95 |
#oder mit allen Metriken
|
96 |
def compute_metrics_alle(eval_pred):
|
97 |
metrics = ["accuracy", "recall", "precision", "f1"] #List of metrics to return
|
|
|
187 |
batch_size=1000,
|
188 |
num_proc=4,
|
189 |
)
|
190 |
+
|
191 |
+
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
192 |
+
|
193 |
+
|
194 |
+
print ("###############lm datasets####################")
|
195 |
+
print (tokenizer.decode(lm_datasets["train"][1]["input_ids"])
|
196 |
#die Daten wurden nun "gereinigt" und für das Model vorbereitet.
|
197 |
#z.B. anschauen mit: tokenizer.decode(lm_datasets["train"][1]["input_ids"])
|
198 |
|
|
|
218 |
overwrite_output_dir = 'True',
|
219 |
per_device_train_batch_size=batch_size, #batch_size = 2 for full training
|
220 |
per_device_eval_batch_size=batch_size,
|
221 |
+
num_train_epochs=5,
|
222 |
+
logging_steps=5000,
|
223 |
evaluation_strategy = "epoch", #oder steps
|
224 |
logging_strategy="epoch", #oder steps
|
225 |
#logging_steps=10,
|
|
|
231 |
#logging_steps=2, # set to 1000 for full training
|
232 |
#save_steps=16, # set to 500 for full training
|
233 |
#eval_steps=4, # set to 8000 for full training
|
234 |
+
warmup_steps=100, # set to 2000 for full training
|
235 |
#max_steps=16, # delete for full training
|
236 |
# overwrite_output_dir=True,
|
237 |
#save_total_limit=1,
|
238 |
#fp16=True,
|
239 |
+
save_strategy = "no",
|
240 |
optim="adamw_torch",
|
241 |
#load_best_model_at_end=False,
|
242 |
#load_best_model_at_end=True
|
243 |
#push_to_hub=True,
|
244 |
)
|
245 |
|
246 |
+
|
247 |
+
|
248 |
#Trainer zusammenstellen
|
249 |
print ("################################")
|
250 |
print ("trainer")
|
|
|
254 |
args=training_args,
|
255 |
train_dataset=lm_datasets["train"],
|
256 |
eval_dataset=lm_datasets["test"],
|
257 |
+
data_collator=data_collator,
|
258 |
#tokenizer=tokenizer,
|
259 |
compute_metrics=compute_metrics,
|
260 |
)
|
|
|
337 |
trainer.evaluate(eval_dataset=lm_datasets["test"])
|
338 |
print("Done Eval")
|
339 |
|
340 |
+
print('################ Test Trained Model ###################')
|
341 |
+
#predictions = trainer.predict(lm_datasets["test"])
|
342 |
+
#preds = np.argmax(predictions.predictions, axis=-1)
|
343 |
+
|
344 |
+
|
345 |
+
|
346 |
###################################################
|
347 |
#Save to a place -????? Where????
|
348 |
#print("Save to ???")
|
|
|
353 |
#####################################
|
354 |
#Push to Hub
|
355 |
print ("################################")
|
356 |
+
print("###################push to hub###################")
|
357 |
print("push to hub - Model")
|
358 |
login(token=os.environ["HF_WRITE_TOKEN"])
|
359 |
trainer.push_to_hub("alexkueck/li-tis-tuned-2")
|