File size: 9,910 Bytes
af937f5
 
063f2a2
204683a
af937f5
063f2a2
 
 
 
 
 
 
 
 
 
 
2e4f369
063f2a2
2e4f369
063f2a2
 
 
af937f5
 
 
bded0de
 
 
063f2a2
 
 
 
 
bded0de
063f2a2
2e4f369
 
 
 
 
 
 
063f2a2
 
 
 
 
 
 
 
 
 
 
 
9bd3f5e
9156bad
063f2a2
 
 
 
 
 
 
 
 
9156bad
063f2a2
 
 
 
 
 
 
 
 
 
 
7bf0758
 
 
 
063f2a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9156bad
 
 
 
 
 
 
 
063f2a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
691f8b7
 
063f2a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import os, sys, json
import gradio as gr
import openai
from openai import OpenAI

from langchain.chains import LLMChain, RetrievalQA
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import PyPDFLoader, WebBaseLoader
from langchain.document_loaders.blob_loaders.youtube_audio import YoutubeAudioLoader
from langchain.document_loaders.generic import GenericLoader
from langchain.document_loaders.parsers import OpenAIWhisperParser

from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.prompts import PromptTemplate
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
#from langchain.vectorstores import MongoDBAtlasVectorSearch

#from pymongo import MongoClient

from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())


# Schnittstellen hinzubinden und OpenAI Key holen aus den Secrets
client = OpenAI(
  api_key=os.getenv("OPENAI_API_KEY"),  # this is also the default, it can be omitted
)





#openai.api_key = os.getenv["OPENAI_API_KEY"]

#Für MongoDB statt Chroma als Vektorstore
#MONGODB_URI = os.environ["MONGODB_ATLAS_CLUSTER_URI"]
#client = MongoClient(MONGODB_URI)
#MONGODB_DB_NAME = "langchain_db"
#MONGODB_COLLECTION_NAME = "gpt-4"
#MONGODB_COLLECTION = client[MONGODB_DB_NAME][MONGODB_COLLECTION_NAME]
#MONGODB_INDEX_NAME = "default"

template = """If you don't know the answer, just say that you don't know, don't try to make up an answer. Keep the answer as concise as possible. Always say 
              "🧠 Thanks for using the app - Bernd" at the end of the answer. """

llm_template = "Answer the question at the end. " + template + "Question: {question} Helpful Answer: "
rag_template = "Use the following pieces of context to answer the question at the end. " + template + "{context} Question: {question} Helpful Answer: "

LLM_CHAIN_PROMPT = PromptTemplate(input_variables = ["question"], 
                                  template = llm_template)
RAG_CHAIN_PROMPT = PromptTemplate(input_variables = ["context", "question"], 
                                  template = rag_template)

#Pfad, wo Docs abgelegt werden können - lokal, also hier im HF Space (sonst auf eigenem Rechner)
PATH_WORK = "."
CHROMA_DIR  = "/data/chroma"
YOUTUBE_DIR = "/data/youtube"

PDF_URL       = "https://arxiv.org/pdf/2303.08774.pdf"
WEB_URL       = "https://openai.com/research/gpt-4"
YOUTUBE_URL_1 = "https://www.youtube.com/watch?v=--khbXchTeE"
YOUTUBE_URL_2 = "https://www.youtube.com/watch?v=hdhZwyf24mE"
YOUTUBE_URL_3 = "https://www.youtube.com/watch?v=vw-KWfKwvTQ"

MODEL_NAME  = "gpt-3.5-turbo-16k"

def document_loading_splitting():
    # Document loading
    docs = []
    # Load PDF
    loader = PyPDFLoader(PDF_URL)
    docs.extend(loader.load())
    # Load Web
    loader = WebBaseLoader(WEB_URL)
    docs.extend(loader.load())
    # Load YouTube
    #loader = GenericLoader(YoutubeAudioLoader([YOUTUBE_URL_1,
                                               #YOUTUBE_URL_2,
                                               #YOUTUBE_URL_3], YOUTUBE_DIR), 
                           #OpenAIWhisperParser())
    docs.extend(loader.load())
    # Document splitting
    text_splitter = RecursiveCharacterTextSplitter(chunk_overlap = 150,
                                                   chunk_size = 1500)
    splits = text_splitter.split_documents(docs)
    return splits

def document_storage_chroma(splits):
    Chroma.from_documents(documents = splits, 
                          embedding = OpenAIEmbeddings(disallowed_special = ()), 
                          persist_directory = CHROMA_DIR)

def document_storage_mongodb(splits):
    MongoDBAtlasVectorSearch.from_documents(documents = splits,
                                            embedding = OpenAIEmbeddings(disallowed_special = ()),
                                            collection = MONGODB_COLLECTION,
                                            index_name = MONGODB_INDEX_NAME)

def document_retrieval_chroma(llm, prompt):      
    embeddings = OpenAIEmbeddings()
    #Alternative Embedding - für Vektorstore, um Ähnlichkeitsvektoren zu erzeugen
    #embeddings = HuggingFaceInstructEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={"device": "cpu"})
    db = Chroma(embedding_function = embeddings,
                #persist_directory = CHROMA_DIR)
                persist_directory = path_work + '/chroma',
    
    return db

def document_retrieval_mongodb(llm, prompt):
    db = MongoDBAtlasVectorSearch.from_connection_string(MONGODB_URI,
                                                         MONGODB_DB_NAME + "." + MONGODB_COLLECTION_NAME,
                                                         OpenAIEmbeddings(disallowed_special = ()),
                                                         index_name = MONGODB_INDEX_NAME)
    return db

def llm_chain(llm, prompt):
    llm_chain = LLMChain(llm = llm, prompt = LLM_CHAIN_PROMPT)
    result = llm_chain.run({"question": prompt})
    return result

def rag_chain(llm, prompt, db):
    rag_chain = RetrievalQA.from_chain_type(llm, 
                                            chain_type_kwargs = {"prompt": RAG_CHAIN_PROMPT}, 
                                            retriever = db.as_retriever(search_kwargs = {"k": 3}), 
                                            return_source_documents = True)
    result = rag_chain({"query": prompt})
    return result["result"]

def invoke(openai_api_key, rag_option, prompt):
    if (openai_api_key == ""):
        raise gr.Error("OpenAI API Key is required.")
    if (rag_option is None):
        raise gr.Error("Retrieval Augmented Generation is required.")
    if (prompt == ""):
        raise gr.Error("Prompt is required.")
    try:
        llm = ChatOpenAI(model_name = MODEL_NAME, 
                         openai_api_key = openai_api_key, 
                         temperature = 0)
        if (rag_option == "Chroma"):
            splits = document_loading_splitting()
            document_storage_chroma(splits)
            db = document_retrieval_chroma(llm, prompt)
            result = rag_chain(llm, prompt, db)
        elif (rag_option == "MongoDB"):
            #splits = document_loading_splitting()
            #document_storage_mongodb(splits)
            db = document_retrieval_mongodb(llm, prompt)
            result = rag_chain(llm, prompt, db)
        else:
            result = llm_chain(llm, prompt)
    except Exception as e:
        raise gr.Error(e)
    return result

description = """<strong>Overview:</strong> Reasoning application that demonstrates a <strong>Large Language Model (LLM)</strong> with 
                 <strong>Retrieval Augmented Generation (RAG)</strong> on <strong>external data</strong>.\n\n
                 <strong>Instructions:</strong> Enter an OpenAI API key and perform LLM use cases (semantic search, summarization, translation, etc.) on 
                 <a href='""" + YOUTUBE_URL_1 + """'>YouTube</a>, <a href='""" + PDF_URL + """'>PDF</a>, and <a href='""" + WEB_URL + """'>Web</a> 
                 data on GPT-4, published after LLM knowledge cutoff.
                 <ul style="list-style-type:square;">
                 <li>Set "Retrieval Augmented Generation" to "<strong>Off</strong>" and submit prompt "What is GPT-4?" The <strong>LLM without RAG</strong> does not know the answer.</li>
                 <li>Set "Retrieval Augmented Generation" to "<strong>Chroma</strong>" or "<strong>MongoDB</strong>" and submit prompt "What is GPT-4?" The <strong>LLM with RAG</strong> knows the answer.</li>
                 <li>Experiment with prompts, e.g. "What are GPT-4's media capabilities in 5 emojis and 1 sentence?", "List GPT-4's exam scores and benchmark results.", or "Compare GPT-4 to GPT-3.5 in markdown table format."</li>
                 <li>Experiment some more, for example "What is the GPT-4 API's cost and rate limit? Answer in English, Arabic, Chinese, Hindi, and Russian in JSON format." or "Write a Python program that calls the GPT-4 API."</li>
                 </ul>\n\n
                 <strong>Technology:</strong> <a href='https://www.gradio.app/'>Gradio</a> UI using the <a href='https://openai.com/'>OpenAI</a> API and 
                 AI-native <a href='https://www.trychroma.com/'>Chroma</a> embedding database / 
                 <a href='https://www.mongodb.com/blog/post/introducing-atlas-vector-search-build-intelligent-applications-semantic-search-ai'>MongoDB</a> vector search. 
                 <strong>Speech-to-text</strong> (STT) via <a href='https://openai.com/research/whisper'>whisper-1</a> model, <strong>text embedding</strong> via 
                 <a href='https://openai.com/blog/new-and-improved-embedding-model'>text-embedding-ada-002</a> model, and <strong>text generation</strong> via 
                 <a href='""" + WEB_URL + """'>gpt-4</a> model. Implementation via AI-first <a href='https://www.langchain.com/'>LangChain</a> toolkit.\n\n
                 In addition to the OpenAI API version, see also the <a href='https://aws.amazon.com/bedrock/'>Amazon Bedrock</a> API and 
                 <a href='https://cloud.google.com/vertex-ai'>Google Vertex AI</a> API versions on 
                 <a href='https://github.com/bstraehle/ai-ml-dl/tree/main/hugging-face'>GitHub</a>."""

gr.close_all()
demo = gr.Interface(fn=invoke, 
                    inputs = [gr.Textbox(label = "OpenAI API Key", value = "sk-", lines = 1), 
                              gr.Radio(["Off", "Chroma", "MongoDB"], label="Retrieval Augmented Generation", value = "Off"),
                              gr.Textbox(label = "Prompt", value = "What is GPT-4?", lines = 1)],
                    outputs = [gr.Textbox(label = "Completion", lines = 1)],
                    title = "Generative AI - LLM & RAG",
                    description = description)
demo.launch()