|
import requests |
|
import os, sys, json |
|
import gradio as gr |
|
import openai |
|
from openai import OpenAI |
|
import time |
|
import re |
|
import io |
|
from PIL import Image, ImageDraw, ImageOps, ImageFont |
|
import base64 |
|
|
|
from langchain.chains import LLMChain, RetrievalQA |
|
from langchain.chat_models import ChatOpenAI |
|
from langchain.document_loaders import PyPDFLoader, WebBaseLoader, UnstructuredWordDocumentLoader, DirectoryLoader |
|
from langchain.document_loaders.blob_loaders.youtube_audio import YoutubeAudioLoader |
|
from langchain.document_loaders.generic import GenericLoader |
|
from langchain.document_loaders.parsers import OpenAIWhisperParser |
|
from langchain.schema import AIMessage, HumanMessage |
|
from langchain.llms import HuggingFaceHub |
|
from langchain.llms import HuggingFaceTextGenInference |
|
from langchain.embeddings import HuggingFaceInstructEmbeddings, HuggingFaceEmbeddings, HuggingFaceBgeEmbeddings, HuggingFaceInferenceAPIEmbeddings |
|
|
|
from langchain.embeddings.openai import OpenAIEmbeddings |
|
from langchain.prompts import PromptTemplate |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from langchain.vectorstores import Chroma |
|
from chromadb.errors import InvalidDimensionException |
|
from utils import * |
|
from beschreibungen import * |
|
|
|
|
|
|
|
|
|
|
|
from dotenv import load_dotenv, find_dotenv |
|
_ = load_dotenv(find_dotenv()) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
splittet = False |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template = """Antworte in deutsch, wenn es nicht explizit anders gefordert wird. Wenn du die Antwort nicht kennst, antworte einfach, dass du es nicht weißt. Versuche nicht, die Antwort zu erfinden oder aufzumocken. Halte die Antwort kurz aber ausführlich genug und exakt.""" |
|
|
|
llm_template = "Beantworte die Frage am Ende. " + template + "Frage: {question} Hilfreiche Antwort: " |
|
rag_template = "Nutze die folgenden Kontext Teile, um die Frage zu beantworten am Ende. " + template + "{context} Frage: {question} Hilfreiche Antwort: " |
|
|
|
|
|
|
|
LLM_CHAIN_PROMPT = PromptTemplate(input_variables = ["question"], |
|
template = llm_template) |
|
RAG_CHAIN_PROMPT = PromptTemplate(input_variables = ["context", "question"], |
|
template = rag_template) |
|
|
|
|
|
HUGGINGFACEHUB_API_TOKEN = os.getenv("HF_ACCESS_READ") |
|
OAI_API_KEY=os.getenv("OPENAI_API_KEY") |
|
HEADERS = {"Authorization": f"Bearer {HUGGINGFACEHUB_API_TOKEN}"} |
|
|
|
|
|
|
|
PATH_WORK = "." |
|
CHROMA_DIR = "/chroma" |
|
YOUTUBE_DIR = "/youtube" |
|
HISTORY_PFAD = "/data/history" |
|
|
|
|
|
|
|
PDF_URL = "https://arxiv.org/pdf/2303.08774.pdf" |
|
WEB_URL = "https://openai.com/research/gpt-4" |
|
YOUTUBE_URL_1 = "https://www.youtube.com/watch?v=--khbXchTeE" |
|
YOUTUBE_URL_2 = "https://www.youtube.com/watch?v=hdhZwyf24mE" |
|
|
|
|
|
|
|
|
|
|
|
MODEL_NAME = "gpt-3.5-turbo-16k" |
|
|
|
|
|
MODEL_NAME_IMAGE = "gpt-4-vision-preview" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
repo_id = "HuggingFaceH4/zephyr-7b-alpha" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MODEL_NAME_HF = "mistralai/Mixtral-8x7B-Instruct-v0.1" |
|
MODEL_NAME_OAI_ZEICHNEN = "dall-e-3" |
|
|
|
API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-2-1" |
|
|
|
|
|
|
|
|
|
os.environ["HUGGINGFACEHUB_API_TOKEN"] = HUGGINGFACEHUB_API_TOKEN |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def clear_all(): |
|
return None, gr.Image(visible=False), [] |
|
|
|
|
|
|
|
def add_text(chatbot, history, prompt, file): |
|
if (file == None): |
|
chatbot = chatbot +[(prompt, None)] |
|
else: |
|
if (prompt == ""): |
|
chatbot=chatbot + [((file.name,), "Prompt fehlt!")] |
|
else: |
|
chatbot = chatbot +[((file.name,), None), (prompt, None)] |
|
print("chatbot nach add_text............") |
|
print(chatbot) |
|
return chatbot, history, prompt, file, gr.Image(visible = False), "" |
|
|
|
def add_text2(chatbot, prompt): |
|
if (prompt == ""): |
|
chatbot = chatbot + [("", "Prompt fehlt!")] |
|
else: |
|
chatbot = chatbot + [(prompt, None)] |
|
print("chatbot nach add_text............") |
|
print(chatbot) |
|
return chatbot, prompt, "" |
|
|
|
|
|
|
|
def file_anzeigen(file): |
|
return gr.Image( width=47, visible=True, interactive = False, height=47, min_width=47, show_download_button=False, show_share_button=False, show_label=False, scale = 0.5), file, file |
|
|
|
def file_loeschen(): |
|
return None, gr.Image(visible = False) |
|
|
|
|
|
|
|
def cancel_outputing(): |
|
reset_textbox() |
|
return "Stop Done" |
|
|
|
def reset_textbox(): |
|
return gr.update(value=""),"" |
|
|
|
|
|
|
|
|
|
def umwandeln_fuer_anzeige(image): |
|
buffer = io.BytesIO() |
|
image.save(buffer, format='PNG') |
|
return buffer.getvalue() |
|
|
|
|
|
|
|
def create_picture(history, prompt): |
|
client = OpenAI() |
|
response = client.images.generate(model="dall-e-3", prompt=prompt,size="1024x1024",quality="standard",n=1,) |
|
image_url = response.data[0].url |
|
|
|
response2 = requests.get(image_url) |
|
|
|
image = Image.open(response2.raw) |
|
return image |
|
|
|
|
|
|
|
|
|
def process_image(image_path, prompt): |
|
|
|
with open(image_path, "rb") as image_file: |
|
encoded_string = base64.b64encode(image_file.read()).decode('utf-8') |
|
|
|
|
|
|
|
headers = { |
|
"Content-Type": "application/json", |
|
"Authorization": f"Bearer {OAI_API_KEY}" |
|
} |
|
|
|
payload = { |
|
"model": MODEL_NAME_IMAGE, |
|
"messages": [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{ |
|
"type": "text", |
|
"text": prompt |
|
}, |
|
{ |
|
"type": "image_url", |
|
"image_url": { |
|
"url": f"data:image/jpeg;base64,{encoded_string}" |
|
} |
|
} |
|
] |
|
} |
|
], |
|
"max_tokens": 300 |
|
} |
|
return headers, payload |
|
|
|
|
|
|
|
def transfer_input(inputs): |
|
textbox = reset_textbox() |
|
return ( |
|
inputs, |
|
gr.update(value=""), |
|
gr.Button.update(visible=True), |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
def generate_auswahl(prompt, file, chatbot, history, rag_option, model_option, openai_api_key, k=3, top_p=0.6, temperature=0.5, max_new_tokens=4048, max_context_length_tokens=2048, repetition_penalty=1.3,): |
|
|
|
if (file == None): |
|
result = generate_text(prompt, chatbot, history, rag_option, model_option, openai_api_key, k=3, top_p=0.6, temperature=0.5, max_new_tokens=4048, max_context_length_tokens=2048, repetition_penalty=1.3,) |
|
history = history + [(prompt, result)] |
|
else: |
|
|
|
|
|
result= generate_text_zu_bild(file, prompt, k, rag_option, chatbot) |
|
history = history + [((file,), None),(prompt, result)] |
|
|
|
print("result..................") |
|
print(result) |
|
print("history.......................") |
|
print(chatbot) |
|
chatbot[-1][1] = "" |
|
for character in result: |
|
chatbot[-1][1] += character |
|
time.sleep(0.03) |
|
yield chatbot, history, None, "Generating" |
|
if shared_state.interrupted: |
|
shared_state.recover() |
|
try: |
|
yield chatbot, history, None, "Stop: Success" |
|
except: |
|
pass |
|
|
|
|
|
|
|
def generate_bild(prompt, chatbot, temperature=0.5, max_new_tokens=4048,top_p=0.6, repetition_penalty=1.3): |
|
|
|
data = {"inputs": prompt} |
|
response = requests.post(API_URL, headers=HEADERS, json=data) |
|
print("fertig Bild") |
|
result = response.content |
|
|
|
image = Image.open(io.BytesIO(result)) |
|
image_64 = umwandeln_fuer_anzeige(image) |
|
chatbot[-1][1]= "<img src='data:image/png;base64,{0}'/>".format(base64.b64encode(image_64).decode('utf-8')) |
|
return chatbot, "Success" |
|
|
|
|
|
|
|
|
|
|
|
def generate_text_zu_bild(file, prompt, k, rag_option, chatbot): |
|
global splittet |
|
|
|
prompt_neu = prompt |
|
if (rag_option == "An"): |
|
|
|
if not splittet: |
|
splits = document_loading_splitting() |
|
document_storage_chroma(splits) |
|
db = document_retrieval_chroma2() |
|
|
|
neu_text_mit_chunks = rag_chain2(prompt, db, k) |
|
|
|
|
|
|
|
prompt_neu = generate_prompt_with_history(neu_text_mit_chunks, chatbot) |
|
|
|
headers, payload = process_image(file, prompt_neu) |
|
response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload) |
|
|
|
data = response.json() |
|
|
|
result = data['choices'][0]['message']['content'] |
|
return result |
|
|
|
|
|
|
|
|
|
def generate_text (prompt, chatbot, history, rag_option, model_option, openai_api_key, k=3, top_p=0.6, temperature=0.5, max_new_tokens=4048, max_context_length_tokens=2048, repetition_penalty=1.3,): |
|
global splittet |
|
|
|
if (openai_api_key == "" or openai_api_key == "sk-"): |
|
|
|
|
|
openai_api_key= OAI_API_KEY |
|
if (rag_option is None): |
|
raise gr.Error("Retrieval Augmented Generation ist erforderlich.") |
|
if (prompt == ""): |
|
raise gr.Error("Prompt ist erforderlich.") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
try: |
|
|
|
|
|
|
|
if (model_option == "OpenAI"): |
|
|
|
print("OpenAI Anfrage.......................") |
|
llm = ChatOpenAI(model_name = MODEL_NAME, openai_api_key = openai_api_key, temperature=temperature) |
|
|
|
if (rag_option == "An"): |
|
history_text_und_prompt = generate_prompt_with_history(prompt, chatbot) |
|
else: |
|
history_text_und_prompt = generate_prompt_with_history_openai(prompt, chatbot) |
|
else: |
|
|
|
print("HF Anfrage.......................") |
|
llm = HuggingFaceHub(repo_id=repo_id, model_kwargs={"temperature": 0.5, "max_length": 128}) |
|
|
|
|
|
|
|
print("HF") |
|
|
|
history_text_und_prompt = generate_prompt_with_history(prompt, chatbot) |
|
|
|
|
|
if (rag_option == "An"): |
|
print("RAG aktiviert.......................") |
|
|
|
if not splittet: |
|
splits = document_loading_splitting() |
|
document_storage_chroma(splits) |
|
db = document_retrieval_chroma(llm, history_text_und_prompt) |
|
print("LLM aufrufen mit RAG: ...........") |
|
result = rag_chain(llm, history_text_und_prompt, db) |
|
|
|
|
|
|
|
|
|
|
|
else: |
|
print("LLM aufrufen ohne RAG: ...........") |
|
result = llm_chain(llm, history_text_und_prompt) |
|
|
|
except Exception as e: |
|
raise gr.Error(e) |
|
|
|
return result |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
description2 = "<strong>Information:</strong> Hier wird ein <strong>Large Language Model (LLM)</strong> zum Zeichnen verwendet. Zur Zeit wird hier Stable Diffusion verwendet.\n\n" |
|
|
|
|
|
|
|
|
|
def vote(data: gr.LikeData): |
|
if data.liked: print("You upvoted this response: " + data.value) |
|
else: print("You downvoted this response: " + data.value) |
|
|
|
|
|
print ("Start GUIneu") |
|
with open("custom.css", "r", encoding="utf-8") as f: |
|
customCSS = f.read() |
|
|
|
|
|
additional_inputs = [ |
|
gr.Slider(label="Temperature", value=0.65, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Höhere Werte erzeugen diversere Antworten", visible=True), |
|
gr.Slider(label="Max new tokens", value=1024, minimum=0, maximum=4096, step=64, interactive=True, info="Maximale Anzahl neuer Tokens", visible=True), |
|
gr.Slider(label="Top-p (nucleus sampling)", value=0.6, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Höhere Werte verwenden auch Tokens mit niedrigerer Wahrscheinlichkeit.", visible=True), |
|
gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Strafe für wiederholte Tokens", visible=True) |
|
] |
|
with gr.Blocks(css=customCSS, theme=small_and_beautiful_theme) as demo: |
|
|
|
|
|
history = gr.State([]) |
|
|
|
user_question = gr.State("") |
|
|
|
user_question2 = gr.State("") |
|
attached_file = gr.State(None) |
|
|
|
|
|
|
|
gr.Markdown(description_top) |
|
with gr.Tab("Chatbot"): |
|
with gr.Row(): |
|
gr.HTML("LI Chatot") |
|
status_display = gr.Markdown("Success", elem_id="status_display") |
|
with gr.Row(): |
|
with gr.Column(scale=5): |
|
with gr.Row(): |
|
chatbot = gr.Chatbot(elem_id="li-chat",show_copy_button=True) |
|
with gr.Row(): |
|
with gr.Column(scale=12): |
|
user_input = gr.Textbox( |
|
show_label=False, placeholder="Gib hier deinen Prompt ein...", |
|
container=False |
|
) |
|
with gr.Column(min_width=70, scale=1): |
|
submitBtn = gr.Button("Senden") |
|
with gr.Column(min_width=70, scale=1): |
|
cancelBtn = gr.Button("Stop") |
|
with gr.Row(): |
|
|
|
image_display = gr.Image( visible=False) |
|
upload = gr.UploadButton("📁", file_types=["image"], scale = 10) |
|
emptyBtn = gr.ClearButton([user_input, chatbot, history, attached_file, image_display], value="🧹 Neue Session", scale=10) |
|
|
|
with gr.Column(): |
|
with gr.Column(min_width=50, scale=1): |
|
with gr.Tab(label="Parameter Einstellung"): |
|
|
|
rag_option = gr.Radio(["Aus", "An"], label="LI Erweiterungen (RAG)", value = "Aus") |
|
model_option = gr.Radio(["OpenAI", "HuggingFace"], label="Modellauswahl", value = "OpenAI") |
|
|
|
|
|
top_p = gr.Slider( |
|
minimum=-0, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
interactive=True, |
|
label="Top-p", |
|
visible=False, |
|
) |
|
temperature = gr.Slider( |
|
minimum=0.1, |
|
maximum=2.0, |
|
value=0.5, |
|
step=0.1, |
|
interactive=True, |
|
label="Temperature", |
|
visible=False |
|
) |
|
max_length_tokens = gr.Slider( |
|
minimum=0, |
|
maximum=512, |
|
value=512, |
|
step=8, |
|
interactive=True, |
|
label="Max Generation Tokens", |
|
visible=False, |
|
) |
|
max_context_length_tokens = gr.Slider( |
|
minimum=0, |
|
maximum=4096, |
|
value=2048, |
|
step=128, |
|
interactive=True, |
|
label="Max History Tokens", |
|
visible=False, |
|
) |
|
repetition_penalty=gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Strafe für wiederholte Tokens", visible=False) |
|
anzahl_docs = gr.Slider(label="Anzahl Dokumente", value=3, minimum=1, maximum=10, step=1, interactive=True, info="wie viele Dokumententeile aus dem Vektorstore an den prompt gehängt werden", visible=False) |
|
openai_key = gr.Textbox(label = "OpenAI API Key", value = "sk-", lines = 1, visible = False) |
|
|
|
|
|
|
|
with gr.Tab("KI zum Zeichnen"): |
|
with gr.Row(): |
|
gr.HTML("LI Zeichnen mit KI") |
|
status_display2 = gr.Markdown("Success", elem_id="status_display") |
|
gr.Markdown(description2) |
|
with gr.Row(): |
|
with gr.Column(scale=5): |
|
with gr.Row(): |
|
chatbot_bild = gr.Chatbot(elem_id="li-zeichnen") |
|
with gr.Row(): |
|
with gr.Column(scale=12): |
|
user_input2 = gr.Textbox( |
|
show_label=False, placeholder="Gib hier deinen Prompt ein...", |
|
container=False |
|
) |
|
with gr.Column(min_width=70, scale=1): |
|
submitBtn2 = gr.Button("Senden") |
|
|
|
|
|
with gr.Row(): |
|
emptyBtn2 = gr.ClearButton([user_input, chatbot_bild], value="🧹 Neue Session", scale=10) |
|
|
|
|
|
gr.Markdown(description) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
predict_args = dict( |
|
fn=generate_auswahl, |
|
inputs=[ |
|
user_question, |
|
attached_file, |
|
chatbot, |
|
history, |
|
rag_option, |
|
model_option, |
|
openai_key, |
|
anzahl_docs, |
|
top_p, |
|
temperature, |
|
max_length_tokens, |
|
max_context_length_tokens, |
|
repetition_penalty |
|
], |
|
outputs=[chatbot, history, attached_file, status_display], |
|
show_progress=True, |
|
) |
|
|
|
reset_args = dict( |
|
fn=reset_textbox, inputs=[], outputs=[user_input, status_display] |
|
) |
|
|
|
|
|
transfer_input_args = dict( |
|
fn=add_text, inputs=[chatbot, history, user_input, attached_file], outputs=[chatbot, history, user_question, attached_file, image_display , user_input], show_progress=True |
|
) |
|
|
|
predict_event1 = user_input.submit(**transfer_input_args, queue=False,).then(**predict_args) |
|
predict_event2 = submitBtn.click(**transfer_input_args, queue=False,).then(**predict_args) |
|
predict_event3 = upload.upload(file_anzeigen, [upload], [image_display, image_display, attached_file] ) |
|
emptyBtn.click(clear_all, [], [attached_file, image_display, history]) |
|
image_display.select(file_loeschen, [], [attached_file, image_display]) |
|
|
|
|
|
cancelBtn.click(cancel_outputing, [], [status_display], cancels=[predict_event1,predict_event2, predict_event3]) |
|
|
|
|
|
|
|
predict_args2 = dict( |
|
fn=generate_bild, |
|
inputs=[ |
|
user_question2, |
|
chatbot_bild, |
|
|
|
], |
|
outputs=[chatbot_bild, status_display2], |
|
show_progress=True, |
|
) |
|
transfer_input_args2 = dict( |
|
fn=add_text2, inputs=[chatbot_bild, user_input2], outputs=[chatbot_bild, user_question2, user_input2], show_progress=True |
|
) |
|
predict_event2_1 = user_input2.submit(**transfer_input_args2, queue=False,).then(**predict_args2) |
|
predict_event2_2 = submitBtn2.click(**transfer_input_args2, queue=False,).then(**predict_args2) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
demo.title = "LI-ChatBot" |
|
demo.queue().launch(debug=True) |