SucheRAG / utils.py
alexkueck's picture
Update utils.py
9516191
raw
history blame
29 kB
from __future__ import annotations
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Tuple, Type
import logging
import json
import os
import datetime
import hashlib
import csv
import requests
import re
import html
import markdown2
import torch
import sys
import gc
from pygments.lexers import guess_lexer, ClassNotFound
import time
import gradio as gr
from pypinyin import lazy_pinyin
import tiktoken
import mdtex2html
from markdown import markdown
from pygments import highlight
from pygments.lexers import guess_lexer,get_lexer_by_name
from pygments.formatters import HtmlFormatter
from langchain.chains import LLMChain, RetrievalQA
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import PyPDFLoader, WebBaseLoader, UnstructuredWordDocumentLoader, DirectoryLoader
from langchain.document_loaders.blob_loaders.youtube_audio import YoutubeAudioLoader
from langchain.document_loaders.generic import GenericLoader
from langchain.document_loaders.parsers import OpenAIWhisperParser
from langchain.schema import AIMessage, HumanMessage
from langchain.llms import HuggingFaceHub
from langchain.llms import HuggingFaceTextGenInference
from langchain.embeddings import HuggingFaceInstructEmbeddings, HuggingFaceEmbeddings, HuggingFaceBgeEmbeddings, HuggingFaceInferenceAPIEmbeddings
from langchain.tools import DuckDuckGoSearchRun
from langchain.retrievers.tavily_search_api import TavilySearchAPIRetriever
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.prompts import PromptTemplate
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from chromadb.errors import InvalidDimensionException
import io
from PIL import Image, ImageDraw, ImageOps, ImageFont
import base64
from tempfile import NamedTemporaryFile
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s [%(levelname)s] [%(filename)s:%(lineno)d] %(message)s",
)
################################################
#Beispiel-Antworten, wenn die KI etwas nicht beantworten kann - dann im Netz suchen
################################################
# Your predefined sentences
ANTWORT_WEISS_NICHT = ["ich weiß nicht.", "ich weiß das nicht", "Ich habe dazu keine Antwort", "Ich bin nicht sicher", "Ich kann das nicht beantworten", "Es tut mir leid, aber ich kenne keinen", "Es tut mir leid, aber ich kann die Frage nicht beantworten.", "Es tut mir leid, aber ich kann die Frage nicht beantworten, da ich zu der Frage keine spezifischen Informatioen habe"]
#################################################
#Gesetzte Werte für Pfade, Prompts und Keys..
#################################################
#################################################
#Prompt Zusätze
template = """Antworte in deutsch, wenn es nicht explizit anders gefordert wird. Wenn du die Antwort nicht kennst, antworte direkt, dass du es nicht weißt. Versuche nicht es zu umschreiben. Versuche nicht, die Antwort zu erfinden oder aufzumocken. Halte die Antwort kurz aber ausführlich genug und exakt."""
llm_template = "Beantworte die Frage am Ende. " + template + "Frage: {question} Hilfreiche Antwort: "
#nur für HF für Stichwotre bei chatverlauf
llm_template2 = "Fasse folgenden Text als Überschrift mit maximal 3 Worten zusammen. Text: {question} "
rag_template = "Nutze die folgenden Kontext Teile, um die Frage zu beantworten am Ende. " + template + "{context} Frage: {question} Hilfreiche Antwort: "
#################################################
#Konstanten
LLM_CHAIN_PROMPT = PromptTemplate(input_variables = ["question"],
template = llm_template)
#nur für HF bei chatverlauf
LLM_CHAIN_PROMPT2 = PromptTemplate(input_variables = ["question"],
template = llm_template2)
RAG_CHAIN_PROMPT = PromptTemplate(input_variables = ["context", "question"],
template = rag_template)
################################################
#Pfad, wo Docs/Bilder/Filme abgelegt werden können - lokal, also hier im HF Space (sonst auf eigenem Rechner)
PATH_WORK = "."
CHROMA_DIR = "/chroma"
YOUTUBE_DIR = "/youtube"
HISTORY_PFAD = "/data/history"
###############################################
#URLs zu Dokumenten oder andere Inhalte, die einbezogen werden sollen
PDF_URL = "https://arxiv.org/pdf/2303.08774.pdf"
WEB_URL = "https://openai.com/research/gpt-4"
YOUTUBE_URL_1 = "https://www.youtube.com/watch?v=--khbXchTeE"
YOUTUBE_URL_2 = "https://www.youtube.com/watch?v=hdhZwyf24mE"
#YOUTUBE_URL_3 = "https://www.youtube.com/watch?v=vw-KWfKwvTQ"
#################################################
# Retrieval Funktion, um KI-Antwort mit vorgegebenen zu vergleichen
# Function to determine if the response is similar to predefined responses
def is_response_similar(user_response, threshold=0.7):
# Combine the standard responses with the user's response
combined_responses = ANTWORT_WEISS_NICHT + [user_response]
# Convert text to TF-IDF feature vectors
vectorizer = TfidfVectorizer()
tfidf_matrix = vectorizer.fit_transform(combined_responses)
# Compute cosine similarity between user's response and standard responses
cosine_similarities = cosine_similarity(tfidf_matrix[-1], tfidf_matrix[:-1])
# Check if any of the standard responses are similar to the user's response
if np.max(cosine_similarities) > threshold:
return True
return False
##################################################
#RAG Hilfsfunktionen - Dokumenten bearbeiten für Vektorstore
##################################################
##################################################
# Funktion, um für einen best. File-typ ein directory-loader zu definieren
def create_directory_loader(file_type, directory_path):
#verscheidene Dokument loaders:
loaders = {
'.pdf': PyPDFLoader,
'.word': UnstructuredWordDocumentLoader,
}
return DirectoryLoader(
path=directory_path,
glob=f"**/*{file_type}",
loader_cls=loaders[file_type],
)
################################################
#die Inhalte splitten, um in Vektordatenbank entsprechend zu laden als Splits
def document_loading_splitting():
##############################
# Document loading
docs = []
# kreiere einen DirectoryLoader für jeden file type
pdf_loader = create_directory_loader('.pdf', './chroma/pdf')
word_loader = create_directory_loader('.word', './chroma/word')
# Load the files
pdf_documents = pdf_loader.load()
word_documents = word_loader.load()
#alle zusammen in docs...
docs.extend(pdf_documents)
docs.extend(word_documents)
#andere loader...
# Load PDF
loader = PyPDFLoader(PDF_URL)
docs.extend(loader.load())
# Load Web
loader = WebBaseLoader(WEB_URL)
docs.extend(loader.load())
# Load YouTube
loader = GenericLoader(YoutubeAudioLoader([YOUTUBE_URL_1,YOUTUBE_URL_2], PATH_WORK + YOUTUBE_DIR), OpenAIWhisperParser())
docs.extend(loader.load())
################################
# Document splitting
text_splitter = RecursiveCharacterTextSplitter(chunk_overlap = 150, chunk_size = 1500)
splits = text_splitter.split_documents(docs)
return splits
###########################################
#Chroma DB die splits ablegen - vektorisiert...
def document_storage_chroma(splits):
#OpenAi embeddings----------------------------------
Chroma.from_documents(documents = splits, embedding = OpenAIEmbeddings(disallowed_special = ()), persist_directory = PATH_WORK + CHROMA_DIR)
#HF embeddings--------------------------------------
#Chroma.from_documents(documents = splits, embedding = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2", model_kwargs={"device": "cpu"}, encode_kwargs={'normalize_embeddings': False}), persist_directory = PATH_WORK + CHROMA_DIR)
#Mongo DB die splits ablegen - vektorisiert...
def document_storage_mongodb(splits):
MongoDBAtlasVectorSearch.from_documents(documents = splits,
embedding = OpenAIEmbeddings(disallowed_special = ()),
collection = MONGODB_COLLECTION,
index_name = MONGODB_INDEX_NAME)
############################################
#dokumente in chroma db vektorisiert ablegen können - die Db vorbereiten daüfur
def document_retrieval_chroma(llm, prompt):
#OpenAI embeddings -------------------------------
embeddings = OpenAIEmbeddings()
#HF embeddings -----------------------------------
#Alternative Embedding - für Vektorstore, um Ähnlichkeitsvektoren zu erzeugen - die ...InstructEmbedding ist sehr rechenaufwendig
#embeddings = HuggingFaceInstructEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={"device": "cpu"})
#etwas weniger rechenaufwendig:
#embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2", model_kwargs={"device": "cpu"}, encode_kwargs={'normalize_embeddings': False})
#ChromaDb um die embedings zu speichern
db = Chroma(embedding_function = embeddings, persist_directory = PATH_WORK + CHROMA_DIR)
return db
############################################
#dokumente in chroma db vektorisiert ablegen können - die Db vorbereiten daüfur
#zweite Variante, passend zu rag_chain2 für generate_text_mit_bild- ohne llm vorher festlegen zu müssen
def document_retrieval_chroma2():
#OpenAI embeddings -------------------------------
embeddings = OpenAIEmbeddings()
#HF embeddings -----------------------------------
#Alternative Embedding - für Vektorstore, um Ähnlichkeitsvektoren zu erzeugen - die ...InstructEmbedding ist sehr rechenaufwendig
#embeddings = HuggingFaceInstructEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={"device": "cpu"})
#etwas weniger rechenaufwendig:
#embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2", model_kwargs={"device": "cpu"}, encode_kwargs={'normalize_embeddings': False})
#oder einfach ohne Langchain:
#embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
#ChromaDb um die embedings zu speichern
db = Chroma(embedding_function = embeddings, persist_directory = PATH_WORK + CHROMA_DIR)
print ("Chroma DB bereit ...................")
return db
###########################################
#dokumente in mongo db vektorisiert ablegen können - die Db vorbereiten daüfür
def document_retrieval_mongodb(llm, prompt):
db = MongoDBAtlasVectorSearch.from_connection_string(MONGODB_URI,
MONGODB_DB_NAME + "." + MONGODB_COLLECTION_NAME,
OpenAIEmbeddings(disallowed_special = ()),
index_name = MONGODB_INDEX_NAME)
return db
###############################################
#Langchain anlegen
###############################################
#langchain nutzen, um prompt an LLM zu leiten - llm und prompt sind austauschbar
def llm_chain(llm, prompt):
llm_chain = LLMChain(llm = llm, prompt = LLM_CHAIN_PROMPT)
result = llm_chain.run({"question": prompt})
return result
#nur für HF-um bei chatverlauf kurzbeschreibung zu erzeugen
def llm_chain2(llm, prompt):
llm_chain = LLMChain(llm = llm, prompt = LLM_CHAIN_PROMPT2)
result = llm_chain.run({"question": prompt})
return result
#############################################
#langchain nutzen, um prompt an llm zu leiten, aber vorher in der VektorDB suchen, um passende splits zum Prompt hinzuzufügen
def rag_chain(llm, prompt, db):
rag_chain = RetrievalQA.from_chain_type(llm,
chain_type_kwargs = {"prompt": RAG_CHAIN_PROMPT},
retriever = db.as_retriever(search_kwargs = {"k": 3}),
return_source_documents = True)
result = rag_chain({"query": prompt})
return result["result"]
############################################
# rag_chain Alternative für RAg mit Bild-Upload, da hier das llm so nicht genutzt werden kann und der prompt mit den RAG Erweiterungen anders übergeben wird
#langchain nutzen, um prompt an llm zu leiten, aber vorher in der VektorDB suchen, um passende splits zum Prompt hinzuzufügen
#prompt mit RAG!!!
def rag_chain2(prompt, db, k=3):
rag_template = "Nutze die folgenden Kontext Teile am Ende, um die Frage zu beantworten . " + template + "Frage: " + prompt + "Kontext Teile: "
retrieved_chunks = db.similarity_search(prompt, k)
neu_prompt = rag_template
for i, chunk in enumerate(retrieved_chunks):
neu_prompt += f"{i+1}. {chunk}\n"
return neu_prompt
###################################################
#Prompts mit History erzeugen für verschiednee Modelle
###################################################
#Funktion, die einen Prompt mit der history zusammen erzeugt - allgemein
def generate_prompt_with_history(text, history, max_length=4048):
#prompt = "The following is a conversation between a human and an AI assistant named Baize (named after a mythical creature in Chinese folklore). Baize is an open-source AI assistant developed by UCSD and Sun Yat-Sen University. The human and the AI assistant take turns chatting. Human statements start with [|Human|] and AI assistant statements start with [|AI|]. The AI assistant always provides responses in as much detail as possible, and in Markdown format. The AI assistant always declines to engage with topics, questions and instructions related to unethical, controversial, or sensitive issues. Complete the transcript in exactly that format.\n[|Human|]Hello!\n[|AI|]Hi!"
#prompt = "Das folgende ist eine Unterhaltung in deutsch zwischen einem Menschen und einem KI-Assistenten, der Baize genannt wird. Baize ist ein open-source KI-Assistent, der von UCSD entwickelt wurde. Der Mensch und der KI-Assistent chatten abwechselnd miteinander in deutsch. Die Antworten des KI Assistenten sind immer so ausführlich wie möglich und in Markdown Schreibweise und in deutscher Sprache. Wenn nötig übersetzt er sie ins Deutsche. Die Antworten des KI-Assistenten vermeiden Themen und Antworten zu unethischen, kontroversen oder sensiblen Themen. Die Antworten sind immer sehr höflich formuliert..\n[|Human|]Hallo!\n[|AI|]Hi!"
prompt=""
history = ["\n{}\n{}".format(x[0],x[1]) for x in history]
history.append("\n{}\n".format(text))
history_text = ""
flag = False
for x in history[::-1]:
history_text = x + history_text
flag = True
if flag:
return prompt+history_text
else:
return None
##############################################
#Prompt und History für OPenAi Schnittstelle
def generate_prompt_with_history_openai(prompt, history):
history_openai_format = []
for human, assistant in history:
history_openai_format.append({"role": "user", "content": human })
history_openai_format.append({"role": "assistant", "content":assistant})
history_openai_format.append({"role": "user", "content": prompt})
print("openai history und prompt................")
print(history_openai_format)
return history_openai_format
#############################################
#Prompt und History für Hugging Face Schnittstelle
def generate_prompt_with_history_hf(prompt, history):
history_transformer_format = history + [[prompt, ""]]
#stop = StopOnTokens()
messages = "".join(["".join(["\n<human>:"+item[0], "\n<bot>:"+item[1]]) #curr_system_message +
for item in history_transformer_format])
##############################################
#Prompt und History für Langchain Schnittstelle
def generate_prompt_with_history_langchain(prompt, history):
history_langchain_format = []
for human, ai in history:
history_langchain_format.append(HumanMessage(content=human))
history_langchain_format.append(AIMessage(content=ai))
history_langchain_format.append(HumanMessage(content=prompt))
return history_langchain_format
##########################################
#Json für OpenAI Genaeration Chat zusammenstellen
##########################################
##########################################
#ein hochgeladenes Bild so vorbereiten, dass OpenAI API es annehmen kann und bearbeiten
#muss ein base64 Bils sein und header und payload entsprechend konfigurieren
def process_image(image_path, prompt, model_image, oai_key):
# Convert image to base64
with open(image_path, "rb") as image_file:
encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
# Prepare the data for the API request (specific to the API you're using)
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {oai_key}"
}
payload = {
"model": model_image,
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": llm_template + prompt
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{encoded_string}"
}
}
]
}
],
"max_tokens": 300
}
return headers, payload
def process_chatverlauf(prompt, model, oai_key):
# Prepare the data for the API request (specific to the API you're using)
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {oai_key}"
}
payload = {
"model": model,
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": 'Gib folgendem Text eine Überschrift mit maximal 2 Worten' + prompt
},
]
}
],
"max_tokens": 100
}
return headers, payload
def process_chatverlauf_hf(history, llm):
input = generate_prompt_with_history("Gib folgendem Text eine Überschrift mit maximal 3 Worten", history)
result = llm_chain2(llm, input)
return result
#######################################################
#Funktionen, um aus der summary des chatverlaufs eine Datei zu machen, die man downloaden kann
def save_and_download(chat_history):
# Speichere den Chatverlauf in einer temporären Datei
with NamedTemporaryFile(delete=False, mode="w", suffix=".txt", dir="./temp") as tmp:
temp_file_path = tmp.name
tmp.write(chat_history)
return temp_file_path
def cleanup(file_path):
if os.path.exists(file_path):
os.remove(file_path)
########################################################
#Ausgabe im Chatbot aufhübschen...
########################################################
def markdown_to_html_with_syntax_highlight(md_str):
def replacer(match):
lang = match.group(1) or "text"
code = match.group(2)
lang = lang.strip()
#print(1,lang)
if lang=="text":
lexer = guess_lexer(code)
lang = lexer.name
#print(2,lang)
try:
lexer = get_lexer_by_name(lang, stripall=True)
except ValueError:
lexer = get_lexer_by_name("python", stripall=True)
formatter = HtmlFormatter()
#print(3,lexer.name)
highlighted_code = highlight(code, lexer, formatter)
return f'<pre><code class="{lang}">{highlighted_code}</code></pre>'
code_block_pattern = r"```(\w+)?\n([\s\S]+?)\n```"
md_str = re.sub(code_block_pattern, replacer, md_str, flags=re.MULTILINE)
html_str = markdown(md_str)
return html_str
def normalize_markdown(md_text: str) -> str:
lines = md_text.split("\n")
normalized_lines = []
inside_list = False
for i, line in enumerate(lines):
if re.match(r"^(\d+\.|-|\*|\+)\s", line.strip()):
if not inside_list and i > 0 and lines[i - 1].strip() != "":
normalized_lines.append("")
inside_list = True
normalized_lines.append(line)
elif inside_list and line.strip() == "":
if i < len(lines) - 1 and not re.match(
r"^(\d+\.|-|\*|\+)\s", lines[i + 1].strip()
):
normalized_lines.append(line)
continue
else:
inside_list = False
normalized_lines.append(line)
return "\n".join(normalized_lines)
def convert_mdtext(md_text):
code_block_pattern = re.compile(r"```(.*?)(?:```|$)", re.DOTALL)
inline_code_pattern = re.compile(r"`(.*?)`", re.DOTALL)
code_blocks = code_block_pattern.findall(md_text)
non_code_parts = code_block_pattern.split(md_text)[::2]
result = []
for non_code, code in zip(non_code_parts, code_blocks + [""]):
if non_code.strip():
non_code = normalize_markdown(non_code)
if inline_code_pattern.search(non_code):
result.append(markdown(non_code, extensions=["tables"]))
else:
result.append(mdtex2html.convert(non_code, extensions=["tables"]))
if code.strip():
code = f"\n```{code}\n\n```"
code = markdown_to_html_with_syntax_highlight(code)
result.append(code)
result = "".join(result)
result += ALREADY_CONVERTED_MARK
return result
def convert_asis(userinput):
return f"<p style=\"white-space:pre-wrap;\">{html.escape(userinput)}</p>"+ALREADY_CONVERTED_MARK
def detect_converted_mark(userinput):
if userinput.endswith(ALREADY_CONVERTED_MARK):
return True
else:
return False
def detect_language(code):
if code.startswith("\n"):
first_line = ""
else:
first_line = code.strip().split("\n", 1)[0]
language = first_line.lower() if first_line else ""
code_without_language = code[len(first_line) :].lstrip() if first_line else code
return language, code_without_language
def convert_to_markdown(text):
text = text.replace("$","&#36;")
def replace_leading_tabs_and_spaces(line):
new_line = []
for char in line:
if char == "\t":
new_line.append("&#9;")
elif char == " ":
new_line.append("&nbsp;")
else:
break
return "".join(new_line) + line[len(new_line):]
markdown_text = ""
lines = text.split("\n")
in_code_block = False
for line in lines:
if in_code_block is False and line.startswith("```"):
in_code_block = True
markdown_text += f"{line}\n"
elif in_code_block is True and line.startswith("```"):
in_code_block = False
markdown_text += f"{line}\n"
elif in_code_block:
markdown_text += f"{line}\n"
else:
line = replace_leading_tabs_and_spaces(line)
line = re.sub(r"^(#)", r"\\\1", line)
markdown_text += f"{line} \n"
return markdown_text
def add_language_tag(text):
def detect_language(code_block):
try:
lexer = guess_lexer(code_block)
return lexer.name.lower()
except ClassNotFound:
return ""
code_block_pattern = re.compile(r"(```)(\w*\n[^`]+```)", re.MULTILINE)
def replacement(match):
code_block = match.group(2)
if match.group(2).startswith("\n"):
language = detect_language(code_block)
if language:
return f"```{language}{code_block}```"
else:
return f"```\n{code_block}```"
else:
return match.group(1) + code_block + "```"
text2 = code_block_pattern.sub(replacement, text)
return text2
def delete_last_conversation(chatbot, history):
if len(chatbot) > 0:
chatbot.pop()
if len(history) > 0:
history.pop()
return (
chatbot,
history,
"Delete Done",
)
def reset_state():
return [], [], "Reset Done"
def reset_textbox():
return gr.update(value=""),""
def cancel_outputing():
return "Stop Done"
##########################################
#Extension des hochgeladenen Files bestimmen
def analyze_file(file):
file_extension = file.name.split('.')[-1] # Holen Sie sich die Dateiendung
return file_extension
########################################
#Aus dem File-Pfad nur den Namen herausholen
def get_filename(file_pfad):
parts = file_pfad.rsplit('/', 1) # Den String nach dem letzten '/' aufteilen
if len(parts) == 2:
result = parts[1] # Der Teil nach dem letzten '/' ist in parts[1]
else:
result = "Ein Fehler im Filenamen ist aufgetreten..."
return result
########################################
#Open Assistant Funktionen für File upload
########################################
def submit_message(assistant_id, thread, client, user_message):
client.beta.threads.messages.create(
thread_id=thread.id, role="user", content=user_message
)
return client.beta.threads.runs.create(
thread_id=thread.id,
assistant_id=assistant_id,
)
def get_response(thread, client, assi_id):
return client.beta.threads.messages.list(thread_id=thread.id, order="asc")
def create_thread_and_run(user_input, client, assi_id):
thread = client.beta.threads.create()
run = submit_message(assi_id, thread, client, user_input)
return thread, run
def pretty_print(messages):
print("# Messages")
for m in messages:
print(f"{m.role}: {m.content[0].text.value}")
print()
# Waiting in a loop
def wait_on_run(run, thread, client):
while run.status == "queued" or run.status == "in_progress":
run = client.beta.threads.runs.retrieve(
thread_id=thread.id,
run_id=run.id,
)
time.sleep(0.5)
return run
########################################
# Tavility Search Machine
def tavily_search(tavily_client, query):
search_result = tavily_client.get_search_context(query, search_depth="advanced", max_tokens=8000)
return search_result
########################################
# nicht in Gebrauch: Assistant für Websuche anlgen
def openai_assistant_suche(client):
assistant = client.beta.assistants.create(
instructions=template,
model="gpt-4-1106-preview",
tools=[{
"type": "function",
"function": {
"name": "tavily_search",
"description": "Get information on recent events from the web.",
"parameters": {
"type": "object",
"properties": {
"query": {"type": "string", "description": "Die Suchanfrage, die die KI nicht beantworten konnte, hier hinein"},
},
"required": ["query"]
}
}
}]
)
return assistant
#########################################
#Bildbearbeitung
#########################################
#########################################
#nicht im Einsatz, da Stable Diffusion die Bilder erzeugt
def create_picture(history, prompt):
client = OpenAI()
response = client.images.generate(model="dall-e-3", prompt=prompt,size="1024x1024",quality="standard",n=1,)
image_url = response.data[0].url
# using requests library to get the image in bytes
response2 = requests.get(image_url)
# using the Image module from PIL library to view the image
image = Image.open(response2.raw)
return image
###################################################
#zur Zeit nicht im Gebrauch
def transfer_input(inputs):
textbox = reset_textbox()
return (
inputs,
gr.update(value=""),
gr.Button.update(visible=True),
)
#################################################
#Klasse mit zuständen - z.B. für interrupt wenn Stop gedrückt...
#################################################
class State:
interrupted = False
def interrupt(self):
self.interrupted = True
def recover(self):
self.interrupted = False
shared_state = State()
def is_stop_word_or_prefix(s: str, stop_words: list) -> bool:
for stop_word in stop_words:
if s.endswith(stop_word):
return True
for i in range(1, len(stop_word)):
if s.endswith(stop_word[:i]):
return True
return False