Update app.py
Browse files
app.py
CHANGED
@@ -214,82 +214,82 @@ def search_documents(query):
|
|
214 |
all_texts.append(preprocessed_text)
|
215 |
|
216 |
if not all_texts:
|
217 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
218 |
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
# TF-IDF-Vektorisierung
|
223 |
-
vectorizer = TfidfVectorizer()
|
224 |
-
text_tfidf = vectorizer.fit_transform(all_texts)
|
225 |
-
query_tfidf = vectorizer.transform([prepro_query])
|
226 |
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
# Sortieren nach Relevanz
|
231 |
-
related_docs_indices = similarities.argsort()[::-1]
|
232 |
-
|
233 |
-
results = []
|
234 |
-
relevant_text = ""
|
235 |
-
relevant_docs = {}
|
236 |
-
num_pages_per_doc = [len(doc['pages']) for doc in documents]
|
237 |
-
cumulative_pages = [sum(num_pages_per_doc[:i+1]) for i in range(len(num_pages_per_doc))]
|
238 |
-
|
239 |
-
for i in related_docs_indices:
|
240 |
-
if similarities[i] > 0.3:
|
241 |
-
doc_index = None
|
242 |
-
for idx, cumulative in enumerate(cumulative_pages):
|
243 |
-
if i < cumulative:
|
244 |
-
doc_index = idx
|
245 |
-
break
|
246 |
-
if doc_index is None:
|
247 |
-
continue
|
248 |
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
#
|
276 |
-
|
277 |
-
|
278 |
-
|
|
|
279 |
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
289 |
|
290 |
-
|
291 |
-
|
|
|
292 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
293 |
|
294 |
|
295 |
|
|
|
214 |
all_texts.append(preprocessed_text)
|
215 |
|
216 |
if not all_texts:
|
217 |
+
return "", ""
|
218 |
+
else:
|
219 |
+
#und nun entsprechend auch die Query überarbeiten
|
220 |
+
prepro_query = preprocess_text(query)
|
221 |
+
|
222 |
+
# TF-IDF-Vektorisierung
|
223 |
+
vectorizer = TfidfVectorizer()
|
224 |
+
text_tfidf = vectorizer.fit_transform(all_texts)
|
225 |
+
query_tfidf = vectorizer.transform([prepro_query])
|
226 |
|
227 |
+
# Berechnung der Ähnlichkeit
|
228 |
+
similarities = cosine_similarity(query_tfidf, text_tfidf).flatten()
|
|
|
|
|
|
|
|
|
|
|
229 |
|
230 |
+
# Sortieren nach Relevanz
|
231 |
+
related_docs_indices = similarities.argsort()[::-1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
|
233 |
+
results = []
|
234 |
+
relevant_text = ""
|
235 |
+
relevant_docs = {}
|
236 |
+
num_pages_per_doc = [len(doc['pages']) for doc in documents]
|
237 |
+
cumulative_pages = [sum(num_pages_per_doc[:i+1]) for i in range(len(num_pages_per_doc))]
|
238 |
+
|
239 |
+
for i in related_docs_indices:
|
240 |
+
if similarities[i] > 0.3:
|
241 |
+
doc_index = None
|
242 |
+
for idx, cumulative in enumerate(cumulative_pages):
|
243 |
+
if i < cumulative:
|
244 |
+
doc_index = idx
|
245 |
+
break
|
246 |
+
if doc_index is None:
|
247 |
+
continue
|
248 |
+
|
249 |
+
page_index = i if doc_index == 0 else i - cumulative_pages[doc_index-1]
|
250 |
+
doc = documents[doc_index]
|
251 |
+
page = doc['pages'][page_index]
|
252 |
+
page_content = page['content']
|
253 |
+
header_content = page.get('header', '')
|
254 |
+
|
255 |
+
# Überprüfen, ob der Suchtext in der Überschrift oder im Seiteninhalt enthalten ist
|
256 |
+
index_in_content = page_content.lower().find(prepro_query.lower())
|
257 |
+
index_in_header = header_content.lower().find(prepro_query.lower())
|
258 |
+
|
259 |
+
# Berücksichtigung der Levenshtein-Distanz
|
260 |
+
# Berücksichtigung der Levenshtein-Distanz
|
261 |
+
words_in_query = prepro_query.split()
|
262 |
+
page_words = preprocess_text(page_content).split()
|
263 |
+
header_words = preprocess_text(header_content).split()
|
264 |
|
265 |
+
if (index_in_content != -1 or index_in_header != -1 or
|
266 |
+
any(fuzz.ratio(word, page_word) > 80 for word in words_in_query for page_word in page_words) or
|
267 |
+
any(fuzz.ratio(word, header_word) > 80 for word in words_in_query for header_word in header_words)):
|
268 |
+
|
269 |
+
|
270 |
+
# Erstellen Sie einen Snippet für die Suchergebnisse
|
271 |
+
start = max(0, index_in_content - 400) if index_in_content != -1 else 0
|
272 |
+
end = min(len(page_content), index_in_content + 400) if index_in_content != -1 else len(page_content)
|
273 |
+
snippet = f"Aus <span class='doc-name'>{doc['file']}</span> (Seite <span class='page-number'>{page_index + 1}</span>):<br>"
|
274 |
+
|
275 |
+
# Fügen Sie die Überschrift hinzu, falls vorhanden
|
276 |
+
if header_content:
|
277 |
+
snippet += f"<span style='color: #0EDC0E; font-weight: bold;'>Überschrift: {header_content}</span> <br>"
|
278 |
+
snippet += f"{remove_line_breaks(page_content[start:end])}<br><hr>"
|
279 |
+
|
280 |
+
relevant_text += snippet
|
281 |
|
282 |
+
if doc['file'] not in relevant_docs:
|
283 |
+
relevant_docs[doc['file']] = []
|
284 |
+
relevant_docs[doc['file']].append(snippet)
|
285 |
|
286 |
+
# Sortieren nach Relevanz
|
287 |
+
results = sorted(results, key=lambda x: x[1], reverse=True)
|
288 |
+
results = [res[0] for res in results]
|
289 |
+
|
290 |
+
results = list(relevant_docs.keys())
|
291 |
+
return results, relevant_text
|
292 |
+
|
293 |
|
294 |
|
295 |
|