Spaces:
Runtime error
Runtime error
File size: 19,841 Bytes
e6b8f5d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 |
import os
import random
import matplotlib
import matplotlib.pyplot as plt
matplotlib.use('Agg')
import torch
from torch import nn, autograd
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import torch.nn.functional as F
from utils import common, train_utils
from criteria import id_loss, moco_loss
from configs import data_configs
from datasets.images_dataset import ImagesDataset
from criteria.lpips.lpips import LPIPS
from models.psp import pSp
from models.latent_codes_pool import LatentCodesPool
from models.discriminator import LatentCodesDiscriminator
from models.encoders.psp_encoders import ProgressiveStage
from training.ranger import Ranger
random.seed(0)
torch.manual_seed(0)
class Coach:
def __init__(self, opts, prev_train_checkpoint=None):
self.opts = opts
self.global_step = 0
self.device = 'cuda:0'
self.opts.device = self.device
# Initialize network
self.net = pSp(self.opts).to(self.device)
# Initialize loss
if self.opts.lpips_lambda > 0:
self.lpips_loss = LPIPS(net_type=self.opts.lpips_type).to(self.device).eval()
if self.opts.id_lambda > 0:
if 'ffhq' in self.opts.dataset_type or 'celeb' in self.opts.dataset_type:
self.id_loss = id_loss.IDLoss().to(self.device).eval()
else:
self.id_loss = moco_loss.MocoLoss(opts).to(self.device).eval()
self.mse_loss = nn.MSELoss().to(self.device).eval()
# Initialize optimizer
self.optimizer = self.configure_optimizers()
# Initialize discriminator
if self.opts.w_discriminator_lambda > 0:
self.discriminator = LatentCodesDiscriminator(512, 4).to(self.device)
self.discriminator_optimizer = torch.optim.Adam(list(self.discriminator.parameters()),
lr=opts.w_discriminator_lr)
self.real_w_pool = LatentCodesPool(self.opts.w_pool_size)
self.fake_w_pool = LatentCodesPool(self.opts.w_pool_size)
# Initialize dataset
self.train_dataset, self.test_dataset = self.configure_datasets()
self.train_dataloader = DataLoader(self.train_dataset,
batch_size=self.opts.batch_size,
shuffle=True,
num_workers=int(self.opts.workers),
drop_last=True)
self.test_dataloader = DataLoader(self.test_dataset,
batch_size=self.opts.test_batch_size,
shuffle=False,
num_workers=int(self.opts.test_workers),
drop_last=True)
# Initialize logger
log_dir = os.path.join(opts.exp_dir, 'logs')
os.makedirs(log_dir, exist_ok=True)
self.logger = SummaryWriter(log_dir=log_dir)
# Initialize checkpoint dir
self.checkpoint_dir = os.path.join(opts.exp_dir, 'checkpoints')
os.makedirs(self.checkpoint_dir, exist_ok=True)
self.best_val_loss = None
if self.opts.save_interval is None:
self.opts.save_interval = self.opts.max_steps
if prev_train_checkpoint is not None:
self.load_from_train_checkpoint(prev_train_checkpoint)
prev_train_checkpoint = None
def load_from_train_checkpoint(self, ckpt):
print('Loading previous training data...')
self.global_step = ckpt['global_step'] + 1
self.best_val_loss = ckpt['best_val_loss']
self.net.load_state_dict(ckpt['state_dict'])
if self.opts.keep_optimizer:
self.optimizer.load_state_dict(ckpt['optimizer'])
if self.opts.w_discriminator_lambda > 0:
self.discriminator.load_state_dict(ckpt['discriminator_state_dict'])
self.discriminator_optimizer.load_state_dict(ckpt['discriminator_optimizer_state_dict'])
if self.opts.progressive_steps:
self.check_for_progressive_training_update(is_resume_from_ckpt=True)
print(f'Resuming training from step {self.global_step}')
def train(self):
self.net.train()
if self.opts.progressive_steps:
self.check_for_progressive_training_update()
while self.global_step < self.opts.max_steps:
for batch_idx, batch in enumerate(self.train_dataloader):
loss_dict = {}
if self.is_training_discriminator():
loss_dict = self.train_discriminator(batch)
x, y, y_hat, latent = self.forward(batch)
loss, encoder_loss_dict, id_logs = self.calc_loss(x, y, y_hat, latent)
loss_dict = {**loss_dict, **encoder_loss_dict}
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
# Logging related
if self.global_step % self.opts.image_interval == 0 or (
self.global_step < 1000 and self.global_step % 25 == 0):
self.parse_and_log_images(id_logs, x, y, y_hat, title='images/train/faces')
if self.global_step % self.opts.board_interval == 0:
self.print_metrics(loss_dict, prefix='train')
self.log_metrics(loss_dict, prefix='train')
# Validation related
val_loss_dict = None
if self.global_step % self.opts.val_interval == 0 or self.global_step == self.opts.max_steps:
val_loss_dict = self.validate()
if val_loss_dict and (self.best_val_loss is None or val_loss_dict['loss'] < self.best_val_loss):
self.best_val_loss = val_loss_dict['loss']
self.checkpoint_me(val_loss_dict, is_best=True)
if self.global_step % self.opts.save_interval == 0 or self.global_step == self.opts.max_steps:
if val_loss_dict is not None:
self.checkpoint_me(val_loss_dict, is_best=False)
else:
self.checkpoint_me(loss_dict, is_best=False)
if self.global_step == self.opts.max_steps:
print('OMG, finished training!')
break
self.global_step += 1
if self.opts.progressive_steps:
self.check_for_progressive_training_update()
def check_for_progressive_training_update(self, is_resume_from_ckpt=False):
for i in range(len(self.opts.progressive_steps)):
if is_resume_from_ckpt and self.global_step >= self.opts.progressive_steps[i]: # Case checkpoint
self.net.encoder.set_progressive_stage(ProgressiveStage(i))
if self.global_step == self.opts.progressive_steps[i]: # Case training reached progressive step
self.net.encoder.set_progressive_stage(ProgressiveStage(i))
def validate(self):
self.net.eval()
agg_loss_dict = []
for batch_idx, batch in enumerate(self.test_dataloader):
cur_loss_dict = {}
if self.is_training_discriminator():
cur_loss_dict = self.validate_discriminator(batch)
with torch.no_grad():
x, y, y_hat, latent = self.forward(batch)
loss, cur_encoder_loss_dict, id_logs = self.calc_loss(x, y, y_hat, latent)
cur_loss_dict = {**cur_loss_dict, **cur_encoder_loss_dict}
agg_loss_dict.append(cur_loss_dict)
# Logging related
self.parse_and_log_images(id_logs, x, y, y_hat,
title='images/test/faces',
subscript='{:04d}'.format(batch_idx))
# For first step just do sanity test on small amount of data
if self.global_step == 0 and batch_idx >= 4:
self.net.train()
return None # Do not log, inaccurate in first batch
loss_dict = train_utils.aggregate_loss_dict(agg_loss_dict)
self.log_metrics(loss_dict, prefix='test')
self.print_metrics(loss_dict, prefix='test')
self.net.train()
return loss_dict
def checkpoint_me(self, loss_dict, is_best):
save_name = 'best_model.pt' if is_best else 'iteration_{}.pt'.format(self.global_step)
save_dict = self.__get_save_dict()
checkpoint_path = os.path.join(self.checkpoint_dir, save_name)
torch.save(save_dict, checkpoint_path)
with open(os.path.join(self.checkpoint_dir, 'timestamp.txt'), 'a') as f:
if is_best:
f.write(
'**Best**: Step - {}, Loss - {:.3f} \n{}\n'.format(self.global_step, self.best_val_loss, loss_dict))
else:
f.write('Step - {}, \n{}\n'.format(self.global_step, loss_dict))
def configure_optimizers(self):
params = list(self.net.encoder.parameters())
if self.opts.train_decoder:
params += list(self.net.decoder.parameters())
else:
self.requires_grad(self.net.decoder, False)
if self.opts.optim_name == 'adam':
optimizer = torch.optim.Adam(params, lr=self.opts.learning_rate)
else:
optimizer = Ranger(params, lr=self.opts.learning_rate)
return optimizer
def configure_datasets(self):
if self.opts.dataset_type not in data_configs.DATASETS.keys():
Exception('{} is not a valid dataset_type'.format(self.opts.dataset_type))
print('Loading dataset for {}'.format(self.opts.dataset_type))
dataset_args = data_configs.DATASETS[self.opts.dataset_type]
transforms_dict = dataset_args['transforms'](self.opts).get_transforms()
train_dataset = ImagesDataset(source_root=dataset_args['train_source_root'],
target_root=dataset_args['train_target_root'],
source_transform=transforms_dict['transform_source'],
target_transform=transforms_dict['transform_gt_train'],
opts=self.opts)
test_dataset = ImagesDataset(source_root=dataset_args['test_source_root'],
target_root=dataset_args['test_target_root'],
source_transform=transforms_dict['transform_source'],
target_transform=transforms_dict['transform_test'],
opts=self.opts)
print("Number of training samples: {}".format(len(train_dataset)))
print("Number of test samples: {}".format(len(test_dataset)))
return train_dataset, test_dataset
def calc_loss(self, x, y, y_hat, latent):
loss_dict = {}
loss = 0.0
id_logs = None
if self.is_training_discriminator(): # Adversarial loss
loss_disc = 0.
dims_to_discriminate = self.get_dims_to_discriminate() if self.is_progressive_training() else \
list(range(self.net.decoder.n_latent))
for i in dims_to_discriminate:
w = latent[:, i, :]
fake_pred = self.discriminator(w)
loss_disc += F.softplus(-fake_pred).mean()
loss_disc /= len(dims_to_discriminate)
loss_dict['encoder_discriminator_loss'] = float(loss_disc)
loss += self.opts.w_discriminator_lambda * loss_disc
if self.opts.progressive_steps and self.net.encoder.progressive_stage.value != 18: # delta regularization loss
total_delta_loss = 0
deltas_latent_dims = self.net.encoder.get_deltas_starting_dimensions()
first_w = latent[:, 0, :]
for i in range(1, self.net.encoder.progressive_stage.value + 1):
curr_dim = deltas_latent_dims[i]
delta = latent[:, curr_dim, :] - first_w
delta_loss = torch.norm(delta, self.opts.delta_norm, dim=1).mean()
loss_dict[f"delta{i}_loss"] = float(delta_loss)
total_delta_loss += delta_loss
loss_dict['total_delta_loss'] = float(total_delta_loss)
loss += self.opts.delta_norm_lambda * total_delta_loss
if self.opts.id_lambda > 0: # Similarity loss
loss_id, sim_improvement, id_logs = self.id_loss(y_hat, y, x)
loss_dict['loss_id'] = float(loss_id)
loss_dict['id_improve'] = float(sim_improvement)
loss += loss_id * self.opts.id_lambda
if self.opts.l2_lambda > 0:
loss_l2 = F.mse_loss(y_hat, y)
loss_dict['loss_l2'] = float(loss_l2)
loss += loss_l2 * self.opts.l2_lambda
if self.opts.lpips_lambda > 0:
loss_lpips = self.lpips_loss(y_hat, y)
loss_dict['loss_lpips'] = float(loss_lpips)
loss += loss_lpips * self.opts.lpips_lambda
loss_dict['loss'] = float(loss)
return loss, loss_dict, id_logs
def forward(self, batch):
x, y = batch
x, y = x.to(self.device).float(), y.to(self.device).float()
y_hat, latent = self.net.forward(x, return_latents=True)
if self.opts.dataset_type == "cars_encode":
y_hat = y_hat[:, :, 32:224, :]
return x, y, y_hat, latent
def log_metrics(self, metrics_dict, prefix):
for key, value in metrics_dict.items():
self.logger.add_scalar('{}/{}'.format(prefix, key), value, self.global_step)
def print_metrics(self, metrics_dict, prefix):
print('Metrics for {}, step {}'.format(prefix, self.global_step))
for key, value in metrics_dict.items():
print('\t{} = '.format(key), value)
def parse_and_log_images(self, id_logs, x, y, y_hat, title, subscript=None, display_count=2):
im_data = []
for i in range(display_count):
cur_im_data = {
'input_face': common.log_input_image(x[i], self.opts),
'target_face': common.tensor2im(y[i]),
'output_face': common.tensor2im(y_hat[i]),
}
if id_logs is not None:
for key in id_logs[i]:
cur_im_data[key] = id_logs[i][key]
im_data.append(cur_im_data)
self.log_images(title, im_data=im_data, subscript=subscript)
def log_images(self, name, im_data, subscript=None, log_latest=False):
fig = common.vis_faces(im_data)
step = self.global_step
if log_latest:
step = 0
if subscript:
path = os.path.join(self.logger.log_dir, name, '{}_{:04d}.jpg'.format(subscript, step))
else:
path = os.path.join(self.logger.log_dir, name, '{:04d}.jpg'.format(step))
os.makedirs(os.path.dirname(path), exist_ok=True)
fig.savefig(path)
plt.close(fig)
def __get_save_dict(self):
save_dict = {
'state_dict': self.net.state_dict(),
'opts': vars(self.opts)
}
# save the latent avg in state_dict for inference if truncation of w was used during training
if self.opts.start_from_latent_avg:
save_dict['latent_avg'] = self.net.latent_avg
if self.opts.save_training_data: # Save necessary information to enable training continuation from checkpoint
save_dict['global_step'] = self.global_step
save_dict['optimizer'] = self.optimizer.state_dict()
save_dict['best_val_loss'] = self.best_val_loss
if self.opts.w_discriminator_lambda > 0:
save_dict['discriminator_state_dict'] = self.discriminator.state_dict()
save_dict['discriminator_optimizer_state_dict'] = self.discriminator_optimizer.state_dict()
return save_dict
def get_dims_to_discriminate(self):
deltas_starting_dimensions = self.net.encoder.get_deltas_starting_dimensions()
return deltas_starting_dimensions[:self.net.encoder.progressive_stage.value + 1]
def is_progressive_training(self):
return self.opts.progressive_steps is not None
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Discriminator ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
def is_training_discriminator(self):
return self.opts.w_discriminator_lambda > 0
@staticmethod
def discriminator_loss(real_pred, fake_pred, loss_dict):
real_loss = F.softplus(-real_pred).mean()
fake_loss = F.softplus(fake_pred).mean()
loss_dict['d_real_loss'] = float(real_loss)
loss_dict['d_fake_loss'] = float(fake_loss)
return real_loss + fake_loss
@staticmethod
def discriminator_r1_loss(real_pred, real_w):
grad_real, = autograd.grad(
outputs=real_pred.sum(), inputs=real_w, create_graph=True
)
grad_penalty = grad_real.pow(2).reshape(grad_real.shape[0], -1).sum(1).mean()
return grad_penalty
@staticmethod
def requires_grad(model, flag=True):
for p in model.parameters():
p.requires_grad = flag
def train_discriminator(self, batch):
loss_dict = {}
x, _ = batch
x = x.to(self.device).float()
self.requires_grad(self.discriminator, True)
with torch.no_grad():
real_w, fake_w = self.sample_real_and_fake_latents(x)
real_pred = self.discriminator(real_w)
fake_pred = self.discriminator(fake_w)
loss = self.discriminator_loss(real_pred, fake_pred, loss_dict)
loss_dict['discriminator_loss'] = float(loss)
self.discriminator_optimizer.zero_grad()
loss.backward()
self.discriminator_optimizer.step()
# r1 regularization
d_regularize = self.global_step % self.opts.d_reg_every == 0
if d_regularize:
real_w = real_w.detach()
real_w.requires_grad = True
real_pred = self.discriminator(real_w)
r1_loss = self.discriminator_r1_loss(real_pred, real_w)
self.discriminator.zero_grad()
r1_final_loss = self.opts.r1 / 2 * r1_loss * self.opts.d_reg_every + 0 * real_pred[0]
r1_final_loss.backward()
self.discriminator_optimizer.step()
loss_dict['discriminator_r1_loss'] = float(r1_final_loss)
# Reset to previous state
self.requires_grad(self.discriminator, False)
return loss_dict
def validate_discriminator(self, test_batch):
with torch.no_grad():
loss_dict = {}
x, _ = test_batch
x = x.to(self.device).float()
real_w, fake_w = self.sample_real_and_fake_latents(x)
real_pred = self.discriminator(real_w)
fake_pred = self.discriminator(fake_w)
loss = self.discriminator_loss(real_pred, fake_pred, loss_dict)
loss_dict['discriminator_loss'] = float(loss)
return loss_dict
def sample_real_and_fake_latents(self, x):
sample_z = torch.randn(self.opts.batch_size, 512, device=self.device)
real_w = self.net.decoder.get_latent(sample_z)
fake_w = self.net.encoder(x)
if self.is_progressive_training(): # When progressive training, feed only unique w's
dims_to_discriminate = self.get_dims_to_discriminate()
fake_w = fake_w[:, dims_to_discriminate, :]
if self.opts.use_w_pool:
real_w = self.real_w_pool.query(real_w)
fake_w = self.fake_w_pool.query(fake_w)
if fake_w.ndim == 3:
fake_w = fake_w[:, 0, :]
return real_w, fake_w
|