Spaces:
Running
Running
import io | |
import gc | |
import base64 | |
import torch | |
import gradio as gr | |
import tempfile | |
import hashlib | |
import os | |
from fastapi import FastAPI | |
from io import BytesIO | |
from PIL import Image | |
# Function to encode a file to Base64 | |
def encode_file_to_base64(file_path): | |
with open(file_path, "rb") as file: | |
# Encode the data to Base64 | |
file_base64 = base64.b64encode(file.read()) | |
return file_base64 | |
def update_edition_api(_: gr.Blocks, app: FastAPI, controller): | |
def _update_edition_api( | |
datas: dict, | |
): | |
edition = datas.get('edition', 'v2') | |
try: | |
controller.update_edition( | |
edition | |
) | |
comment = "Success" | |
except Exception as e: | |
torch.cuda.empty_cache() | |
comment = f"Error. error information is {str(e)}" | |
return {"message": comment} | |
def update_diffusion_transformer_api(_: gr.Blocks, app: FastAPI, controller): | |
def _update_diffusion_transformer_api( | |
datas: dict, | |
): | |
diffusion_transformer_path = datas.get('diffusion_transformer_path', 'none') | |
try: | |
controller.update_diffusion_transformer( | |
diffusion_transformer_path | |
) | |
comment = "Success" | |
except Exception as e: | |
torch.cuda.empty_cache() | |
comment = f"Error. error information is {str(e)}" | |
return {"message": comment} | |
def save_base64_video(base64_string): | |
video_data = base64.b64decode(base64_string) | |
md5_hash = hashlib.md5(video_data).hexdigest() | |
filename = f"{md5_hash}.mp4" | |
temp_dir = tempfile.gettempdir() | |
file_path = os.path.join(temp_dir, filename) | |
with open(file_path, 'wb') as video_file: | |
video_file.write(video_data) | |
return file_path | |
def infer_forward_api(_: gr.Blocks, app: FastAPI, controller): | |
def _infer_forward_api( | |
datas: dict, | |
): | |
base_model_path = datas.get('base_model_path', 'none') | |
lora_model_path = datas.get('lora_model_path', 'none') | |
lora_alpha_slider = datas.get('lora_alpha_slider', 0.55) | |
prompt_textbox = datas.get('prompt_textbox', None) | |
negative_prompt_textbox = datas.get('negative_prompt_textbox', 'The video is not of a high quality, it has a low resolution. Watermark present in each frame. Strange motion trajectory. ') | |
sampler_dropdown = datas.get('sampler_dropdown', 'Euler') | |
sample_step_slider = datas.get('sample_step_slider', 30) | |
resize_method = datas.get('resize_method', "Generate by") | |
width_slider = datas.get('width_slider', 672) | |
height_slider = datas.get('height_slider', 384) | |
base_resolution = datas.get('base_resolution', 512) | |
is_image = datas.get('is_image', False) | |
generation_method = datas.get('generation_method', False) | |
length_slider = datas.get('length_slider', 49) | |
overlap_video_length = datas.get('overlap_video_length', 4) | |
partial_video_length = datas.get('partial_video_length', 72) | |
cfg_scale_slider = datas.get('cfg_scale_slider', 6) | |
start_image = datas.get('start_image', None) | |
end_image = datas.get('end_image', None) | |
validation_video = datas.get('validation_video', None) | |
denoise_strength = datas.get('denoise_strength', 0.70) | |
seed_textbox = datas.get("seed_textbox", 43) | |
generation_method = "Image Generation" if is_image else generation_method | |
if start_image is not None: | |
start_image = base64.b64decode(start_image) | |
start_image = [Image.open(BytesIO(start_image))] | |
if end_image is not None: | |
end_image = base64.b64decode(end_image) | |
end_image = [Image.open(BytesIO(end_image))] | |
if validation_video is not None: | |
validation_video = save_base64_video(validation_video) | |
try: | |
save_sample_path, comment = controller.generate( | |
"", | |
base_model_path, | |
lora_model_path, | |
lora_alpha_slider, | |
prompt_textbox, | |
negative_prompt_textbox, | |
sampler_dropdown, | |
sample_step_slider, | |
resize_method, | |
width_slider, | |
height_slider, | |
base_resolution, | |
generation_method, | |
length_slider, | |
overlap_video_length, | |
partial_video_length, | |
cfg_scale_slider, | |
start_image, | |
end_image, | |
validation_video, | |
denoise_strength, | |
seed_textbox, | |
is_api = True, | |
) | |
except Exception as e: | |
gc.collect() | |
torch.cuda.empty_cache() | |
torch.cuda.ipc_collect() | |
save_sample_path = "" | |
comment = f"Error. error information is {str(e)}" | |
return {"message": comment} | |
if save_sample_path != "": | |
return {"message": comment, "save_sample_path": save_sample_path, "base64_encoding": encode_file_to_base64(save_sample_path)} | |
else: | |
return {"message": comment, "save_sample_path": save_sample_path} |