CogVideoX-Fun-5b / cogvideox /data /dataset_image.py
bubbliiiing
Create Code
00db68b
raw
history blame
2.34 kB
import json
import os
import random
import numpy as np
import torch
import torchvision.transforms as transforms
from PIL import Image
from torch.utils.data.dataset import Dataset
class CC15M(Dataset):
def __init__(
self,
json_path,
video_folder=None,
resolution=512,
enable_bucket=False,
):
print(f"loading annotations from {json_path} ...")
self.dataset = json.load(open(json_path, 'r'))
self.length = len(self.dataset)
print(f"data scale: {self.length}")
self.enable_bucket = enable_bucket
self.video_folder = video_folder
resolution = tuple(resolution) if not isinstance(resolution, int) else (resolution, resolution)
self.pixel_transforms = transforms.Compose([
transforms.Resize(resolution[0]),
transforms.CenterCrop(resolution),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
])
def get_batch(self, idx):
video_dict = self.dataset[idx]
video_id, name = video_dict['file_path'], video_dict['text']
if self.video_folder is None:
video_dir = video_id
else:
video_dir = os.path.join(self.video_folder, video_id)
pixel_values = Image.open(video_dir).convert("RGB")
return pixel_values, name
def __len__(self):
return self.length
def __getitem__(self, idx):
while True:
try:
pixel_values, name = self.get_batch(idx)
break
except Exception as e:
print(e)
idx = random.randint(0, self.length-1)
if not self.enable_bucket:
pixel_values = self.pixel_transforms(pixel_values)
else:
pixel_values = np.array(pixel_values)
sample = dict(pixel_values=pixel_values, text=name)
return sample
if __name__ == "__main__":
dataset = CC15M(
csv_path="/mnt_wg/zhoumo.xjq/CCUtils/cc15m_add_index.json",
resolution=512,
)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=4, num_workers=0,)
for idx, batch in enumerate(dataloader):
print(batch["pixel_values"].shape, len(batch["text"]))