"""Modified from https://github.com/guoyww/AnimateDiff/blob/main/app.py """ import base64 import gc import json import os import random from datetime import datetime from glob import glob import cv2 import gradio as gr import numpy as np import pkg_resources import requests import torch from diffusers import (AutoencoderKL, AutoencoderKLCogVideoX, CogVideoXDDIMScheduler, DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, PNDMScheduler) from diffusers.utils.import_utils import is_xformers_available from omegaconf import OmegaConf from PIL import Image from safetensors import safe_open from transformers import (CLIPImageProcessor, CLIPVisionModelWithProjection, T5EncoderModel, T5Tokenizer) from cogvideox.data.bucket_sampler import ASPECT_RATIO_512, get_closest_ratio from ..models.autoencoder_magvit import AutoencoderKLCogVideoX from cogvideox.models.transformer3d import CogVideoXTransformer3DModel from cogvideox.pipeline.pipeline_cogvideox import CogVideoX_Fun_Pipeline from cogvideox.pipeline.pipeline_cogvideox_inpaint import \ CogVideoX_Fun_Pipeline_Inpaint from cogvideox.utils.lora_utils import merge_lora, unmerge_lora from cogvideox.utils.utils import ( get_image_to_video_latent, get_video_to_video_latent, get_width_and_height_from_image_and_base_resolution, save_videos_grid) scheduler_dict = { "Euler": EulerDiscreteScheduler, "Euler A": EulerAncestralDiscreteScheduler, "DPM++": DPMSolverMultistepScheduler, "PNDM": PNDMScheduler, "DDIM_Cog": CogVideoXDDIMScheduler, "DDIM_Origin": DDIMScheduler, } gradio_version = pkg_resources.get_distribution("gradio").version gradio_version_is_above_4 = True if int(gradio_version.split('.')[0]) >= 4 else False css = """ .toolbutton { margin-buttom: 0em 0em 0em 0em; max-width: 2.5em; min-width: 2.5em !important; height: 2.5em; } """ class CogVideoX_I2VController: def __init__(self, low_gpu_memory_mode, weight_dtype): # config dirs self.basedir = os.getcwd() self.config_dir = os.path.join(self.basedir, "config") self.diffusion_transformer_dir = os.path.join(self.basedir, "models", "Diffusion_Transformer") self.motion_module_dir = os.path.join(self.basedir, "models", "Motion_Module") self.personalized_model_dir = os.path.join(self.basedir, "models", "Personalized_Model") self.savedir = os.path.join(self.basedir, "samples", datetime.now().strftime("Gradio-%Y-%m-%dT%H-%M-%S")) self.savedir_sample = os.path.join(self.savedir, "sample") os.makedirs(self.savedir, exist_ok=True) self.diffusion_transformer_list = [] self.motion_module_list = [] self.personalized_model_list = [] self.refresh_diffusion_transformer() self.refresh_motion_module() self.refresh_personalized_model() # config models self.tokenizer = None self.text_encoder = None self.vae = None self.transformer = None self.pipeline = None self.motion_module_path = "none" self.base_model_path = "none" self.lora_model_path = "none" self.low_gpu_memory_mode = low_gpu_memory_mode self.weight_dtype = weight_dtype def refresh_diffusion_transformer(self): self.diffusion_transformer_list = sorted(glob(os.path.join(self.diffusion_transformer_dir, "*/"))) def refresh_motion_module(self): motion_module_list = sorted(glob(os.path.join(self.motion_module_dir, "*.safetensors"))) self.motion_module_list = [os.path.basename(p) for p in motion_module_list] def refresh_personalized_model(self): personalized_model_list = sorted(glob(os.path.join(self.personalized_model_dir, "*.safetensors"))) self.personalized_model_list = [os.path.basename(p) for p in personalized_model_list] def update_diffusion_transformer(self, diffusion_transformer_dropdown): print("Update diffusion transformer") if diffusion_transformer_dropdown == "none": return gr.update() self.vae = AutoencoderKLCogVideoX.from_pretrained( diffusion_transformer_dropdown, subfolder="vae", ).to(self.weight_dtype) # Get Transformer self.transformer = CogVideoXTransformer3DModel.from_pretrained_2d( diffusion_transformer_dropdown, subfolder="transformer", ).to(self.weight_dtype) # Get pipeline if self.transformer.config.in_channels != self.vae.config.latent_channels: self.pipeline = CogVideoX_Fun_Pipeline_Inpaint.from_pretrained( diffusion_transformer_dropdown, vae=self.vae, transformer=self.transformer, scheduler=scheduler_dict["Euler"].from_pretrained(diffusion_transformer_dropdown, subfolder="scheduler"), torch_dtype=self.weight_dtype ) else: self.pipeline = CogVideoX_Fun_Pipeline.from_pretrained( diffusion_transformer_dropdown, vae=self.vae, transformer=self.transformer, scheduler=scheduler_dict["Euler"].from_pretrained(diffusion_transformer_dropdown, subfolder="scheduler"), torch_dtype=self.weight_dtype ) if self.low_gpu_memory_mode: self.pipeline.enable_sequential_cpu_offload() else: self.pipeline.enable_model_cpu_offload() print("Update diffusion transformer done") return gr.update() def update_base_model(self, base_model_dropdown): self.base_model_path = base_model_dropdown print("Update base model") if base_model_dropdown == "none": return gr.update() if self.transformer is None: gr.Info(f"Please select a pretrained model path.") return gr.update(value=None) else: base_model_dropdown = os.path.join(self.personalized_model_dir, base_model_dropdown) base_model_state_dict = {} with safe_open(base_model_dropdown, framework="pt", device="cpu") as f: for key in f.keys(): base_model_state_dict[key] = f.get_tensor(key) self.transformer.load_state_dict(base_model_state_dict, strict=False) print("Update base done") return gr.update() def update_lora_model(self, lora_model_dropdown): print("Update lora model") if lora_model_dropdown == "none": self.lora_model_path = "none" return gr.update() lora_model_dropdown = os.path.join(self.personalized_model_dir, lora_model_dropdown) self.lora_model_path = lora_model_dropdown return gr.update() def generate( self, diffusion_transformer_dropdown, base_model_dropdown, lora_model_dropdown, lora_alpha_slider, prompt_textbox, negative_prompt_textbox, sampler_dropdown, sample_step_slider, resize_method, width_slider, height_slider, base_resolution, generation_method, length_slider, overlap_video_length, partial_video_length, cfg_scale_slider, start_image, end_image, validation_video, denoise_strength, seed_textbox, is_api = False, ): gc.collect() torch.cuda.empty_cache() torch.cuda.ipc_collect() if self.transformer is None: raise gr.Error(f"Please select a pretrained model path.") if self.base_model_path != base_model_dropdown: self.update_base_model(base_model_dropdown) if self.lora_model_path != lora_model_dropdown: print("Update lora model") self.update_lora_model(lora_model_dropdown) if resize_method == "Resize according to Reference": if start_image is None and validation_video is None: if is_api: return "", f"Please upload an image when using \"Resize according to Reference\"." else: raise gr.Error(f"Please upload an image when using \"Resize according to Reference\".") aspect_ratio_sample_size = {key : [x / 512 * base_resolution for x in ASPECT_RATIO_512[key]] for key in ASPECT_RATIO_512.keys()} if validation_video is not None: original_width, original_height = Image.fromarray(cv2.VideoCapture(validation_video).read()[1]).size else: original_width, original_height = start_image[0].size if type(start_image) is list else Image.open(start_image).size closest_size, closest_ratio = get_closest_ratio(original_height, original_width, ratios=aspect_ratio_sample_size) height_slider, width_slider = [int(x / 16) * 16 for x in closest_size] if self.transformer.config.in_channels == self.vae.config.latent_channels and start_image is not None: if is_api: return "", f"Please select an image to video pretrained model while using image to video." else: raise gr.Error(f"Please select an image to video pretrained model while using image to video.") if self.transformer.config.in_channels == self.vae.config.latent_channels and generation_method == "Long Video Generation": if is_api: return "", f"Please select an image to video pretrained model while using long video generation." else: raise gr.Error(f"Please select an image to video pretrained model while using long video generation.") if start_image is None and end_image is not None: if is_api: return "", f"If specifying the ending image of the video, please specify a starting image of the video." else: raise gr.Error(f"If specifying the ending image of the video, please specify a starting image of the video.") is_image = True if generation_method == "Image Generation" else False self.pipeline.scheduler = scheduler_dict[sampler_dropdown].from_config(self.pipeline.scheduler.config) if self.lora_model_path != "none": # lora part self.pipeline = merge_lora(self.pipeline, self.lora_model_path, multiplier=lora_alpha_slider) if int(seed_textbox) != -1 and seed_textbox != "": torch.manual_seed(int(seed_textbox)) else: seed_textbox = np.random.randint(0, 1e10) generator = torch.Generator(device="cuda").manual_seed(int(seed_textbox)) try: if self.transformer.config.in_channels != self.vae.config.latent_channels: if generation_method == "Long Video Generation": if validation_video is not None: raise gr.Error(f"Video to Video is not Support Long Video Generation now.") init_frames = 0 last_frames = init_frames + partial_video_length while init_frames < length_slider: if last_frames >= length_slider: _partial_video_length = length_slider - init_frames _partial_video_length = int((_partial_video_length - 1) // self.vae.config.temporal_compression_ratio * self.vae.config.temporal_compression_ratio) + 1 if _partial_video_length <= 0: break else: _partial_video_length = partial_video_length if last_frames >= length_slider: input_video, input_video_mask, clip_image = get_image_to_video_latent(start_image, end_image, video_length=_partial_video_length, sample_size=(height_slider, width_slider)) else: input_video, input_video_mask, clip_image = get_image_to_video_latent(start_image, None, video_length=_partial_video_length, sample_size=(height_slider, width_slider)) with torch.no_grad(): sample = self.pipeline( prompt_textbox, negative_prompt = negative_prompt_textbox, num_inference_steps = sample_step_slider, guidance_scale = cfg_scale_slider, width = width_slider, height = height_slider, num_frames = _partial_video_length, generator = generator, video = input_video, mask_video = input_video_mask, strength = 1, ).videos if init_frames != 0: mix_ratio = torch.from_numpy( np.array([float(_index) / float(overlap_video_length) for _index in range(overlap_video_length)], np.float32) ).unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) new_sample[:, :, -overlap_video_length:] = new_sample[:, :, -overlap_video_length:] * (1 - mix_ratio) + \ sample[:, :, :overlap_video_length] * mix_ratio new_sample = torch.cat([new_sample, sample[:, :, overlap_video_length:]], dim = 2) sample = new_sample else: new_sample = sample if last_frames >= length_slider: break start_image = [ Image.fromarray( (sample[0, :, _index].transpose(0, 1).transpose(1, 2) * 255).numpy().astype(np.uint8) ) for _index in range(-overlap_video_length, 0) ] init_frames = init_frames + _partial_video_length - overlap_video_length last_frames = init_frames + _partial_video_length else: if validation_video is not None: input_video, input_video_mask, clip_image = get_video_to_video_latent(validation_video, length_slider if not is_image else 1, sample_size=(height_slider, width_slider)) strength = denoise_strength else: input_video, input_video_mask, clip_image = get_image_to_video_latent(start_image, end_image, length_slider if not is_image else 1, sample_size=(height_slider, width_slider)) strength = 1 sample = self.pipeline( prompt_textbox, negative_prompt = negative_prompt_textbox, num_inference_steps = sample_step_slider, guidance_scale = cfg_scale_slider, width = width_slider, height = height_slider, num_frames = length_slider if not is_image else 1, generator = generator, video = input_video, mask_video = input_video_mask, strength = strength, ).videos else: sample = self.pipeline( prompt_textbox, negative_prompt = negative_prompt_textbox, num_inference_steps = sample_step_slider, guidance_scale = cfg_scale_slider, width = width_slider, height = height_slider, num_frames = length_slider if not is_image else 1, generator = generator ).videos except Exception as e: gc.collect() torch.cuda.empty_cache() torch.cuda.ipc_collect() if self.lora_model_path != "none": self.pipeline = unmerge_lora(self.pipeline, self.lora_model_path, multiplier=lora_alpha_slider) if is_api: return "", f"Error. error information is {str(e)}" else: return gr.update(), gr.update(), f"Error. error information is {str(e)}" gc.collect() torch.cuda.empty_cache() torch.cuda.ipc_collect() # lora part if self.lora_model_path != "none": self.pipeline = unmerge_lora(self.pipeline, self.lora_model_path, multiplier=lora_alpha_slider) sample_config = { "prompt": prompt_textbox, "n_prompt": negative_prompt_textbox, "sampler": sampler_dropdown, "num_inference_steps": sample_step_slider, "guidance_scale": cfg_scale_slider, "width": width_slider, "height": height_slider, "video_length": length_slider, "seed_textbox": seed_textbox } json_str = json.dumps(sample_config, indent=4) with open(os.path.join(self.savedir, "logs.json"), "a") as f: f.write(json_str) f.write("\n\n") if not os.path.exists(self.savedir_sample): os.makedirs(self.savedir_sample, exist_ok=True) index = len([path for path in os.listdir(self.savedir_sample)]) + 1 prefix = str(index).zfill(3) gc.collect() torch.cuda.empty_cache() torch.cuda.ipc_collect() if is_image or length_slider == 1: save_sample_path = os.path.join(self.savedir_sample, prefix + f".png") image = sample[0, :, 0] image = image.transpose(0, 1).transpose(1, 2) image = (image * 255).numpy().astype(np.uint8) image = Image.fromarray(image) image.save(save_sample_path) if is_api: return save_sample_path, "Success" else: if gradio_version_is_above_4: return gr.Image(value=save_sample_path, visible=True), gr.Video(value=None, visible=False), "Success" else: return gr.Image.update(value=save_sample_path, visible=True), gr.Video.update(value=None, visible=False), "Success" else: save_sample_path = os.path.join(self.savedir_sample, prefix + f".mp4") save_videos_grid(sample, save_sample_path, fps=8) if is_api: return save_sample_path, "Success" else: if gradio_version_is_above_4: return gr.Image(visible=False, value=None), gr.Video(value=save_sample_path, visible=True), "Success" else: return gr.Image.update(visible=False, value=None), gr.Video.update(value=save_sample_path, visible=True), "Success" def ui(low_gpu_memory_mode, weight_dtype): controller = CogVideoX_I2VController(low_gpu_memory_mode, weight_dtype) with gr.Blocks(css=css) as demo: gr.Markdown( """ # CogVideoX-Fun: A CogVideoX with more flexible generation conditions, capable of producing videos of different resolutions, around 6 seconds, and fps 8 (frames 1 to 49), as well as image generated videos. [Github](https://github.com/aigc-apps/CogVideoX-Fun/) """ ) with gr.Column(variant="panel"): gr.Markdown( """ ### 1. Model checkpoints (模型路径). """ ) with gr.Row(): diffusion_transformer_dropdown = gr.Dropdown( label="Pretrained Model Path (预训练模型路径)", choices=controller.diffusion_transformer_list, value="none", interactive=True, ) diffusion_transformer_dropdown.change( fn=controller.update_diffusion_transformer, inputs=[diffusion_transformer_dropdown], outputs=[diffusion_transformer_dropdown] ) diffusion_transformer_refresh_button = gr.Button(value="\U0001F503", elem_classes="toolbutton") def refresh_diffusion_transformer(): controller.refresh_diffusion_transformer() return gr.update(choices=controller.diffusion_transformer_list) diffusion_transformer_refresh_button.click(fn=refresh_diffusion_transformer, inputs=[], outputs=[diffusion_transformer_dropdown]) with gr.Row(): base_model_dropdown = gr.Dropdown( label="Select base Dreambooth model (选择基模型[非必需])", choices=controller.personalized_model_list, value="none", interactive=True, ) lora_model_dropdown = gr.Dropdown( label="Select LoRA model (选择LoRA模型[非必需])", choices=["none"] + controller.personalized_model_list, value="none", interactive=True, ) lora_alpha_slider = gr.Slider(label="LoRA alpha (LoRA权重)", value=0.55, minimum=0, maximum=2, interactive=True) personalized_refresh_button = gr.Button(value="\U0001F503", elem_classes="toolbutton") def update_personalized_model(): controller.refresh_personalized_model() return [ gr.update(choices=controller.personalized_model_list), gr.update(choices=["none"] + controller.personalized_model_list) ] personalized_refresh_button.click(fn=update_personalized_model, inputs=[], outputs=[base_model_dropdown, lora_model_dropdown]) with gr.Column(variant="panel"): gr.Markdown( """ ### 2. Configs for Generation (生成参数配置). """ ) prompt_textbox = gr.Textbox(label="Prompt (正向提示词)", lines=2, value="A young woman with beautiful and clear eyes and blonde hair standing and white dress in a forest wearing a crown. She seems to be lost in thought, and the camera focuses on her face. The video is of high quality, and the view is very clear. High quality, masterpiece, best quality, highres, ultra-detailed, fantastic.") negative_prompt_textbox = gr.Textbox(label="Negative prompt (负向提示词)", lines=2, value="The video is not of a high quality, it has a low resolution. Watermark present in each frame. Strange motion trajectory. " ) with gr.Row(): with gr.Column(): with gr.Row(): sampler_dropdown = gr.Dropdown(label="Sampling method (采样器种类)", choices=list(scheduler_dict.keys()), value=list(scheduler_dict.keys())[0]) sample_step_slider = gr.Slider(label="Sampling steps (生成步数)", value=50, minimum=10, maximum=100, step=1) resize_method = gr.Radio( ["Generate by", "Resize according to Reference"], value="Generate by", show_label=False, ) width_slider = gr.Slider(label="Width (视频宽度)", value=672, minimum=128, maximum=1344, step=16) height_slider = gr.Slider(label="Height (视频高度)", value=384, minimum=128, maximum=1344, step=16) base_resolution = gr.Radio(label="Base Resolution of Pretrained Models", value=512, choices=[512, 768, 960], visible=False) with gr.Group(): generation_method = gr.Radio( ["Video Generation", "Image Generation", "Long Video Generation"], value="Video Generation", show_label=False, ) with gr.Row(): length_slider = gr.Slider(label="Animation length (视频帧数)", value=49, minimum=1, maximum=49, step=4) overlap_video_length = gr.Slider(label="Overlap length (视频续写的重叠帧数)", value=4, minimum=1, maximum=4, step=1, visible=False) partial_video_length = gr.Slider(label="Partial video generation length (每个部分的视频生成帧数)", value=25, minimum=5, maximum=49, step=4, visible=False) source_method = gr.Radio( ["Text to Video (文本到视频)", "Image to Video (图片到视频)", "Video to Video (视频到视频)"], value="Text to Video (文本到视频)", show_label=False, ) with gr.Column(visible = False) as image_to_video_col: start_image = gr.Image( label="The image at the beginning of the video (图片到视频的开始图片)", show_label=True, elem_id="i2v_start", sources="upload", type="filepath", ) template_gallery_path = ["asset/1.png", "asset/2.png", "asset/3.png", "asset/4.png", "asset/5.png"] def select_template(evt: gr.SelectData): text = { "asset/1.png": "The dog is looking at camera and smiling. The video is of high quality, and the view is very clear. High quality, masterpiece, best quality, highres, ultra-detailed, fantastic.", "asset/2.png": "a sailboat sailing in rough seas with a dramatic sunset. The video is of high quality, and the view is very clear. High quality, masterpiece, best quality, highres, ultra-detailed, fantastic.", "asset/3.png": "a beautiful woman with long hair and a dress blowing in the wind. The video is of high quality, and the view is very clear. High quality, masterpiece, best quality, highres, ultra-detailed, fantastic.", "asset/4.png": "a man in an astronaut suit playing a guitar. The video is of high quality, and the view is very clear. High quality, masterpiece, best quality, highres, ultra-detailed, fantastic.", "asset/5.png": "fireworks display over night city. The video is of high quality, and the view is very clear. High quality, masterpiece, best quality, highres, ultra-detailed, fantastic.", }[template_gallery_path[evt.index]] return template_gallery_path[evt.index], text template_gallery = gr.Gallery( template_gallery_path, columns=5, rows=1, height=140, allow_preview=False, container=False, label="Template Examples", ) template_gallery.select(select_template, None, [start_image, prompt_textbox]) with gr.Accordion("The image at the ending of the video (图片到视频的结束图片[非必需, Optional])", open=False): end_image = gr.Image(label="The image at the ending of the video (图片到视频的结束图片[非必需, Optional])", show_label=False, elem_id="i2v_end", sources="upload", type="filepath") with gr.Column(visible = False) as video_to_video_col: validation_video = gr.Video( label="The video to convert (视频转视频的参考视频)", show_label=True, elem_id="v2v", sources="upload", ) denoise_strength = gr.Slider(label="Denoise strength (重绘系数)", value=0.70, minimum=0.10, maximum=0.95, step=0.01) cfg_scale_slider = gr.Slider(label="CFG Scale (引导系数)", value=7.0, minimum=0, maximum=20) with gr.Row(): seed_textbox = gr.Textbox(label="Seed (随机种子)", value=43) seed_button = gr.Button(value="\U0001F3B2", elem_classes="toolbutton") seed_button.click( fn=lambda: gr.Textbox(value=random.randint(1, 1e8)) if gradio_version_is_above_4 else gr.Textbox.update(value=random.randint(1, 1e8)), inputs=[], outputs=[seed_textbox] ) generate_button = gr.Button(value="Generate (生成)", variant='primary') with gr.Column(): result_image = gr.Image(label="Generated Image (生成图片)", interactive=False, visible=False) result_video = gr.Video(label="Generated Animation (生成视频)", interactive=False) infer_progress = gr.Textbox( label="Generation Info (生成信息)", value="No task currently", interactive=False ) def upload_generation_method(generation_method): if generation_method == "Video Generation": return [gr.update(visible=True, maximum=49, value=49), gr.update(visible=False), gr.update(visible=False)] elif generation_method == "Image Generation": return [gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)] else: return [gr.update(visible=True, maximum=1344), gr.update(visible=True), gr.update(visible=True)] generation_method.change( upload_generation_method, generation_method, [length_slider, overlap_video_length, partial_video_length] ) def upload_source_method(source_method): if source_method == "Text to Video (文本到视频)": return [gr.update(visible=False), gr.update(visible=False), gr.update(value=None), gr.update(value=None), gr.update(value=None)] elif source_method == "Image to Video (图片到视频)": return [gr.update(visible=True), gr.update(visible=False), gr.update(), gr.update(), gr.update(value=None)] else: return [gr.update(visible=False), gr.update(visible=True), gr.update(value=None), gr.update(value=None), gr.update()] source_method.change( upload_source_method, source_method, [image_to_video_col, video_to_video_col, start_image, end_image, validation_video] ) def upload_resize_method(resize_method): if resize_method == "Generate by": return [gr.update(visible=True), gr.update(visible=True), gr.update(visible=False)] else: return [gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)] resize_method.change( upload_resize_method, resize_method, [width_slider, height_slider, base_resolution] ) generate_button.click( fn=controller.generate, inputs=[ diffusion_transformer_dropdown, base_model_dropdown, lora_model_dropdown, lora_alpha_slider, prompt_textbox, negative_prompt_textbox, sampler_dropdown, sample_step_slider, resize_method, width_slider, height_slider, base_resolution, generation_method, length_slider, overlap_video_length, partial_video_length, cfg_scale_slider, start_image, end_image, validation_video, denoise_strength, seed_textbox, ], outputs=[result_image, result_video, infer_progress] ) return demo, controller class CogVideoX_I2VController_Modelscope: def __init__(self, model_name, savedir_sample, low_gpu_memory_mode, weight_dtype): # Basic dir self.basedir = os.getcwd() self.personalized_model_dir = os.path.join(self.basedir, "models", "Personalized_Model") self.lora_model_path = "none" self.savedir_sample = savedir_sample self.refresh_personalized_model() os.makedirs(self.savedir_sample, exist_ok=True) # model path self.weight_dtype = weight_dtype self.vae = AutoencoderKLCogVideoX.from_pretrained( model_name, subfolder="vae", ).to(self.weight_dtype) # Get Transformer self.transformer = CogVideoXTransformer3DModel.from_pretrained_2d( model_name, subfolder="transformer", ).to(self.weight_dtype) # Get pipeline if self.transformer.config.in_channels != self.vae.config.latent_channels: self.pipeline = CogVideoX_Fun_Pipeline_Inpaint.from_pretrained( model_name, vae=self.vae, transformer=self.transformer, scheduler=scheduler_dict["Euler"].from_pretrained(model_name, subfolder="scheduler"), torch_dtype=self.weight_dtype ) else: self.pipeline = CogVideoX_Fun_Pipeline.from_pretrained( model_name, vae=self.vae, transformer=self.transformer, scheduler=scheduler_dict["Euler"].from_pretrained(model_name, subfolder="scheduler"), torch_dtype=self.weight_dtype ) if low_gpu_memory_mode: self.pipeline.enable_sequential_cpu_offload() else: self.pipeline.enable_model_cpu_offload() print("Update diffusion transformer done") def refresh_personalized_model(self): personalized_model_list = sorted(glob(os.path.join(self.personalized_model_dir, "*.safetensors"))) self.personalized_model_list = [os.path.basename(p) for p in personalized_model_list] def update_lora_model(self, lora_model_dropdown): print("Update lora model") if lora_model_dropdown == "none": self.lora_model_path = "none" return gr.update() lora_model_dropdown = os.path.join(self.personalized_model_dir, lora_model_dropdown) self.lora_model_path = lora_model_dropdown return gr.update() def generate( self, diffusion_transformer_dropdown, base_model_dropdown, lora_model_dropdown, lora_alpha_slider, prompt_textbox, negative_prompt_textbox, sampler_dropdown, sample_step_slider, resize_method, width_slider, height_slider, base_resolution, generation_method, length_slider, overlap_video_length, partial_video_length, cfg_scale_slider, start_image, end_image, validation_video, denoise_strength, seed_textbox, is_api = False, ): gc.collect() torch.cuda.empty_cache() torch.cuda.ipc_collect() if self.transformer is None: raise gr.Error(f"Please select a pretrained model path.") if self.lora_model_path != lora_model_dropdown: print("Update lora model") self.update_lora_model(lora_model_dropdown) if resize_method == "Resize according to Reference": if start_image is None and validation_video is None: raise gr.Error(f"Please upload an image when using \"Resize according to Reference\".") aspect_ratio_sample_size = {key : [x / 512 * base_resolution for x in ASPECT_RATIO_512[key]] for key in ASPECT_RATIO_512.keys()} if validation_video is not None: original_width, original_height = Image.fromarray(cv2.VideoCapture(validation_video).read()[1]).size else: original_width, original_height = start_image[0].size if type(start_image) is list else Image.open(start_image).size closest_size, closest_ratio = get_closest_ratio(original_height, original_width, ratios=aspect_ratio_sample_size) height_slider, width_slider = [int(x / 16) * 16 for x in closest_size] if self.transformer.config.in_channels == self.vae.config.latent_channels and start_image is not None: raise gr.Error(f"Please select an image to video pretrained model while using image to video.") if start_image is None and end_image is not None: raise gr.Error(f"If specifying the ending image of the video, please specify a starting image of the video.") is_image = True if generation_method == "Image Generation" else False self.pipeline.scheduler = scheduler_dict[sampler_dropdown].from_config(self.pipeline.scheduler.config) if self.lora_model_path != "none": # lora part self.pipeline = merge_lora(self.pipeline, self.lora_model_path, multiplier=lora_alpha_slider) if int(seed_textbox) != -1 and seed_textbox != "": torch.manual_seed(int(seed_textbox)) else: seed_textbox = np.random.randint(0, 1e10) generator = torch.Generator(device="cuda").manual_seed(int(seed_textbox)) try: if self.transformer.config.in_channels != self.vae.config.latent_channels: if validation_video is not None: input_video, input_video_mask, clip_image = get_video_to_video_latent(validation_video, length_slider if not is_image else 1, sample_size=(height_slider, width_slider)) strength = denoise_strength else: input_video, input_video_mask, clip_image = get_image_to_video_latent(start_image, end_image, length_slider if not is_image else 1, sample_size=(height_slider, width_slider)) strength = 1 sample = self.pipeline( prompt_textbox, negative_prompt = negative_prompt_textbox, num_inference_steps = sample_step_slider, guidance_scale = cfg_scale_slider, width = width_slider, height = height_slider, num_frames = length_slider if not is_image else 1, generator = generator, video = input_video, mask_video = input_video_mask, strength = strength, ).videos else: sample = self.pipeline( prompt_textbox, negative_prompt = negative_prompt_textbox, num_inference_steps = sample_step_slider, guidance_scale = cfg_scale_slider, width = width_slider, height = height_slider, num_frames = length_slider if not is_image else 1, generator = generator ).videos except Exception as e: gc.collect() torch.cuda.empty_cache() torch.cuda.ipc_collect() if self.lora_model_path != "none": self.pipeline = unmerge_lora(self.pipeline, self.lora_model_path, multiplier=lora_alpha_slider) if is_api: return "", f"Error. error information is {str(e)}" else: return gr.update(), gr.update(), f"Error. error information is {str(e)}" gc.collect() torch.cuda.empty_cache() torch.cuda.ipc_collect() # lora part if self.lora_model_path != "none": self.pipeline = unmerge_lora(self.pipeline, self.lora_model_path, multiplier=lora_alpha_slider) if not os.path.exists(self.savedir_sample): os.makedirs(self.savedir_sample, exist_ok=True) index = len([path for path in os.listdir(self.savedir_sample)]) + 1 prefix = str(index).zfill(3) gc.collect() torch.cuda.empty_cache() torch.cuda.ipc_collect() if is_image or length_slider == 1: save_sample_path = os.path.join(self.savedir_sample, prefix + f".png") image = sample[0, :, 0] image = image.transpose(0, 1).transpose(1, 2) image = (image * 255).numpy().astype(np.uint8) image = Image.fromarray(image) image.save(save_sample_path) if is_api: return save_sample_path, "Success" else: if gradio_version_is_above_4: return gr.Image(value=save_sample_path, visible=True), gr.Video(value=None, visible=False), "Success" else: return gr.Image.update(value=save_sample_path, visible=True), gr.Video.update(value=None, visible=False), "Success" else: save_sample_path = os.path.join(self.savedir_sample, prefix + f".mp4") save_videos_grid(sample, save_sample_path, fps=8) if is_api: return save_sample_path, "Success" else: if gradio_version_is_above_4: return gr.Image(visible=False, value=None), gr.Video(value=save_sample_path, visible=True), "Success" else: return gr.Image.update(visible=False, value=None), gr.Video.update(value=save_sample_path, visible=True), "Success" def ui_modelscope(model_name, savedir_sample, low_gpu_memory_mode, weight_dtype): controller = CogVideoX_I2VController_Modelscope(model_name, savedir_sample, low_gpu_memory_mode, weight_dtype) with gr.Blocks(css=css) as demo: gr.Markdown( """ # CogVideoX-Fun A CogVideoX with more flexible generation conditions, capable of producing videos of different resolutions, around 6 seconds, and fps 8 (frames 1 to 49), as well as image generated videos. [Github](https://github.com/aigc-apps/CogVideoX-Fun/) """ ) with gr.Column(variant="panel"): gr.Markdown( """ ### 1. Model checkpoints (模型路径). """ ) with gr.Row(): diffusion_transformer_dropdown = gr.Dropdown( label="Pretrained Model Path (预训练模型路径)", choices=[model_name], value=model_name, interactive=False, ) with gr.Row(): base_model_dropdown = gr.Dropdown( label="Select base Dreambooth model (选择基模型[非必需])", choices=["none"], value="none", interactive=False, visible=False ) with gr.Column(visible=False): gr.Markdown( """ ### Minimalism is an example portrait of Lora, triggered by specific prompt words. More details can be found on [Wiki](https://github.com/aigc-apps/CogVideoX-Fun/wiki/Training-Lora). """ ) with gr.Row(): lora_model_dropdown = gr.Dropdown( label="Select LoRA model", choices=["none"], value="none", interactive=True, ) lora_alpha_slider = gr.Slider(label="LoRA alpha (LoRA权重)", value=0.55, minimum=0, maximum=2, interactive=True) with gr.Column(variant="panel"): gr.Markdown( """ ### 2. Configs for Generation (生成参数配置). """ ) prompt_textbox = gr.Textbox(label="Prompt (正向提示词)", lines=2, value="A young woman with beautiful and clear eyes and blonde hair standing and white dress in a forest wearing a crown. She seems to be lost in thought, and the camera focuses on her face. The video is of high quality, and the view is very clear. High quality, masterpiece, best quality, highres, ultra-detailed, fantastic.") negative_prompt_textbox = gr.Textbox(label="Negative prompt (负向提示词)", lines=2, value="The video is not of a high quality, it has a low resolution. Watermark present in each frame. Strange motion trajectory. " ) with gr.Row(): with gr.Column(): with gr.Row(): sampler_dropdown = gr.Dropdown(label="Sampling method (采样器种类)", choices=list(scheduler_dict.keys()), value=list(scheduler_dict.keys())[0]) sample_step_slider = gr.Slider(label="Sampling steps (生成步数)", value=50, minimum=10, maximum=50, step=1, interactive=False) resize_method = gr.Radio( ["Generate by", "Resize according to Reference"], value="Generate by", show_label=False, ) width_slider = gr.Slider(label="Width (视频宽度)", value=672, minimum=128, maximum=1280, step=16, interactive=False) height_slider = gr.Slider(label="Height (视频高度)", value=384, minimum=128, maximum=1280, step=16, interactive=False) base_resolution = gr.Radio(label="Base Resolution of Pretrained Models", value=512, choices=[512, 768, 960], interactive=False, visible=False) with gr.Group(): generation_method = gr.Radio( ["Video Generation", "Image Generation"], value="Video Generation", show_label=False, visible=True, ) length_slider = gr.Slider(label="Animation length (视频帧数)", value=49, minimum=5, maximum=49, step=4) overlap_video_length = gr.Slider(label="Overlap length (视频续写的重叠帧数)", value=4, minimum=1, maximum=4, step=1, visible=False) partial_video_length = gr.Slider(label="Partial video generation length (每个部分的视频生成帧数)", value=25, minimum=5, maximum=49, step=4, visible=False) source_method = gr.Radio( ["Text to Video (文本到视频)", "Image to Video (图片到视频)", "Video to Video (视频到视频)"], value="Text to Video (文本到视频)", show_label=False, ) with gr.Column(visible = False) as image_to_video_col: with gr.Row(): start_image = gr.Image(label="The image at the beginning of the video (图片到视频的开始图片)", show_label=True, elem_id="i2v_start", sources="upload", type="filepath") template_gallery_path = ["asset/1.png", "asset/2.png", "asset/3.png", "asset/4.png", "asset/5.png"] def select_template(evt: gr.SelectData): text = { "asset/1.png": "The dog is looking at camera and smiling. The video is of high quality, and the view is very clear. High quality, masterpiece, best quality, highres, ultra-detailed, fantastic.", "asset/2.png": "a sailboat sailing in rough seas with a dramatic sunset. The video is of high quality, and the view is very clear. High quality, masterpiece, best quality, highres, ultra-detailed, fantastic.", "asset/3.png": "a beautiful woman with long hair and a dress blowing in the wind. The video is of high quality, and the view is very clear. High quality, masterpiece, best quality, highres, ultra-detailed, fantastic.", "asset/4.png": "a man in an astronaut suit playing a guitar. The video is of high quality, and the view is very clear. High quality, masterpiece, best quality, highres, ultra-detailed, fantastic.", "asset/5.png": "fireworks display over night city. The video is of high quality, and the view is very clear. High quality, masterpiece, best quality, highres, ultra-detailed, fantastic.", }[template_gallery_path[evt.index]] return template_gallery_path[evt.index], text template_gallery = gr.Gallery( template_gallery_path, columns=5, rows=1, height=140, allow_preview=False, container=False, label="Template Examples", ) template_gallery.select(select_template, None, [start_image, prompt_textbox]) with gr.Accordion("The image at the ending of the video (图片到视频的结束图片[非必需, Optional])", open=False): end_image = gr.Image(label="The image at the ending of the video (图片到视频的结束图片[非必需, Optional])", show_label=False, elem_id="i2v_end", sources="upload", type="filepath") with gr.Column(visible = False) as video_to_video_col: validation_video = gr.Video( label="The video to convert (视频转视频的参考视频)", show_label=True, elem_id="v2v", sources="upload", ) denoise_strength = gr.Slider(label="Denoise strength (重绘系数)", value=0.70, minimum=0.10, maximum=0.95, step=0.01) cfg_scale_slider = gr.Slider(label="CFG Scale (引导系数)", value=7.0, minimum=0, maximum=20) with gr.Row(): seed_textbox = gr.Textbox(label="Seed (随机种子)", value=43) seed_button = gr.Button(value="\U0001F3B2", elem_classes="toolbutton") seed_button.click( fn=lambda: gr.Textbox(value=random.randint(1, 1e8)) if gradio_version_is_above_4 else gr.Textbox.update(value=random.randint(1, 1e8)), inputs=[], outputs=[seed_textbox] ) generate_button = gr.Button(value="Generate (生成)", variant='primary') with gr.Column(): result_image = gr.Image(label="Generated Image (生成图片)", interactive=False, visible=False) result_video = gr.Video(label="Generated Animation (生成视频)", interactive=False) infer_progress = gr.Textbox( label="Generation Info (生成信息)", value="No task currently", interactive=False ) def upload_generation_method(generation_method): if generation_method == "Video Generation": return gr.update(visible=True, minimum=8, maximum=49, value=49, interactive=True) elif generation_method == "Image Generation": return gr.update(minimum=1, maximum=1, value=1, interactive=False) generation_method.change( upload_generation_method, generation_method, [length_slider] ) def upload_source_method(source_method): if source_method == "Text to Video (文本到视频)": return [gr.update(visible=False), gr.update(visible=False), gr.update(value=None), gr.update(value=None), gr.update(value=None)] elif source_method == "Image to Video (图片到视频)": return [gr.update(visible=True), gr.update(visible=False), gr.update(), gr.update(), gr.update(value=None)] else: return [gr.update(visible=False), gr.update(visible=True), gr.update(value=None), gr.update(value=None), gr.update()] source_method.change( upload_source_method, source_method, [image_to_video_col, video_to_video_col, start_image, end_image, validation_video] ) def upload_resize_method(resize_method): if resize_method == "Generate by": return [gr.update(visible=True), gr.update(visible=True), gr.update(visible=False)] else: return [gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)] resize_method.change( upload_resize_method, resize_method, [width_slider, height_slider, base_resolution] ) generate_button.click( fn=controller.generate, inputs=[ diffusion_transformer_dropdown, base_model_dropdown, lora_model_dropdown, lora_alpha_slider, prompt_textbox, negative_prompt_textbox, sampler_dropdown, sample_step_slider, resize_method, width_slider, height_slider, base_resolution, generation_method, length_slider, overlap_video_length, partial_video_length, cfg_scale_slider, start_image, end_image, validation_video, denoise_strength, seed_textbox, ], outputs=[result_image, result_video, infer_progress] ) return demo, controller def post_eas( diffusion_transformer_dropdown, base_model_dropdown, lora_model_dropdown, lora_alpha_slider, prompt_textbox, negative_prompt_textbox, sampler_dropdown, sample_step_slider, resize_method, width_slider, height_slider, base_resolution, generation_method, length_slider, cfg_scale_slider, start_image, end_image, validation_video, denoise_strength, seed_textbox, ): if start_image is not None: with open(start_image, 'rb') as file: file_content = file.read() start_image_encoded_content = base64.b64encode(file_content) start_image = start_image_encoded_content.decode('utf-8') if end_image is not None: with open(end_image, 'rb') as file: file_content = file.read() end_image_encoded_content = base64.b64encode(file_content) end_image = end_image_encoded_content.decode('utf-8') if validation_video is not None: with open(validation_video, 'rb') as file: file_content = file.read() validation_video_encoded_content = base64.b64encode(file_content) validation_video = validation_video_encoded_content.decode('utf-8') datas = { "base_model_path": base_model_dropdown, "lora_model_path": lora_model_dropdown, "lora_alpha_slider": lora_alpha_slider, "prompt_textbox": prompt_textbox, "negative_prompt_textbox": negative_prompt_textbox, "sampler_dropdown": sampler_dropdown, "sample_step_slider": sample_step_slider, "resize_method": resize_method, "width_slider": width_slider, "height_slider": height_slider, "base_resolution": base_resolution, "generation_method": generation_method, "length_slider": length_slider, "cfg_scale_slider": cfg_scale_slider, "start_image": start_image, "end_image": end_image, "validation_video": validation_video, "denoise_strength": denoise_strength, "seed_textbox": seed_textbox, } session = requests.session() session.headers.update({"Authorization": os.environ.get("EAS_TOKEN")}) response = session.post(url=f'{os.environ.get("EAS_URL")}/cogvideox_fun/infer_forward', json=datas, timeout=300) outputs = response.json() return outputs class CogVideoX_I2VController_EAS: def __init__(self, edition, config_path, model_name, savedir_sample): self.savedir_sample = savedir_sample os.makedirs(self.savedir_sample, exist_ok=True) def generate( self, diffusion_transformer_dropdown, base_model_dropdown, lora_model_dropdown, lora_alpha_slider, prompt_textbox, negative_prompt_textbox, sampler_dropdown, sample_step_slider, resize_method, width_slider, height_slider, base_resolution, generation_method, length_slider, cfg_scale_slider, start_image, end_image, validation_video, denoise_strength, seed_textbox ): is_image = True if generation_method == "Image Generation" else False outputs = post_eas( diffusion_transformer_dropdown, base_model_dropdown, lora_model_dropdown, lora_alpha_slider, prompt_textbox, negative_prompt_textbox, sampler_dropdown, sample_step_slider, resize_method, width_slider, height_slider, base_resolution, generation_method, length_slider, cfg_scale_slider, start_image, end_image, validation_video, denoise_strength, seed_textbox ) try: base64_encoding = outputs["base64_encoding"] except: return gr.Image(visible=False, value=None), gr.Video(None, visible=True), outputs["message"] decoded_data = base64.b64decode(base64_encoding) if not os.path.exists(self.savedir_sample): os.makedirs(self.savedir_sample, exist_ok=True) index = len([path for path in os.listdir(self.savedir_sample)]) + 1 prefix = str(index).zfill(3) if is_image or length_slider == 1: save_sample_path = os.path.join(self.savedir_sample, prefix + f".png") with open(save_sample_path, "wb") as file: file.write(decoded_data) if gradio_version_is_above_4: return gr.Image(value=save_sample_path, visible=True), gr.Video(value=None, visible=False), "Success" else: return gr.Image.update(value=save_sample_path, visible=True), gr.Video.update(value=None, visible=False), "Success" else: save_sample_path = os.path.join(self.savedir_sample, prefix + f".mp4") with open(save_sample_path, "wb") as file: file.write(decoded_data) if gradio_version_is_above_4: return gr.Image(visible=False, value=None), gr.Video(value=save_sample_path, visible=True), "Success" else: return gr.Image.update(visible=False, value=None), gr.Video.update(value=save_sample_path, visible=True), "Success" def ui_eas(model_name, savedir_sample): controller = CogVideoX_I2VController_EAS(model_name, savedir_sample) with gr.Blocks(css=css) as demo: gr.Markdown( """ # CogVideoX-Fun A CogVideoX with more flexible generation conditions, capable of producing videos of different resolutions, around 6 seconds, and fps 8 (frames 1 to 49), as well as image generated videos. [Github](https://github.com/aigc-apps/CogVideoX-Fun/) """ ) with gr.Column(variant="panel"): gr.Markdown( """ ### 1. Model checkpoints. """ ) with gr.Row(): diffusion_transformer_dropdown = gr.Dropdown( label="Pretrained Model Path", choices=[model_name], value=model_name, interactive=False, ) with gr.Row(): base_model_dropdown = gr.Dropdown( label="Select base Dreambooth model", choices=["none"], value="none", interactive=False, visible=False ) with gr.Column(visible=False): gr.Markdown( """ ### Minimalism is an example portrait of Lora, triggered by specific prompt words. More details can be found on [Wiki](https://github.com/aigc-apps/CogVideoX-Fun/wiki/Training-Lora). """ ) with gr.Row(): lora_model_dropdown = gr.Dropdown( label="Select LoRA model", choices=["none"], value="none", interactive=True, ) lora_alpha_slider = gr.Slider(label="LoRA alpha (LoRA权重)", value=0.55, minimum=0, maximum=2, interactive=True) with gr.Column(variant="panel"): gr.Markdown( """ ### 2. Configs for Generation. """ ) prompt_textbox = gr.Textbox(label="Prompt", lines=2, value="A young woman with beautiful and clear eyes and blonde hair standing and white dress in a forest wearing a crown. She seems to be lost in thought, and the camera focuses on her face. The video is of high quality, and the view is very clear. High quality, masterpiece, best quality, highres, ultra-detailed, fantastic.") negative_prompt_textbox = gr.Textbox(label="Negative prompt", lines=2, value="The video is not of a high quality, it has a low resolution. Watermark present in each frame. Strange motion trajectory. " ) with gr.Row(): with gr.Column(): with gr.Row(): sampler_dropdown = gr.Dropdown(label="Sampling method", choices=list(scheduler_dict.keys()), value=list(scheduler_dict.keys())[0]) sample_step_slider = gr.Slider(label="Sampling steps", value=50, minimum=10, maximum=50, step=1, interactive=False) resize_method = gr.Radio( ["Generate by", "Resize according to Reference"], value="Generate by", show_label=False, ) width_slider = gr.Slider(label="Width (视频宽度)", value=672, minimum=128, maximum=1280, step=16, interactive=False) height_slider = gr.Slider(label="Height (视频高度)", value=384, minimum=128, maximum=1280, step=16, interactive=False) base_resolution = gr.Radio(label="Base Resolution of Pretrained Models", value=512, choices=[512, 768, 960], interactive=False, visible=False) with gr.Group(): generation_method = gr.Radio( ["Video Generation", "Image Generation"], value="Video Generation", show_label=False, visible=True, ) length_slider = gr.Slider(label="Animation length (视频帧数)", value=49, minimum=5, maximum=49, step=4) source_method = gr.Radio( ["Text to Video (文本到视频)", "Image to Video (图片到视频)", "Video to Video (视频到视频)"], value="Text to Video (文本到视频)", show_label=False, ) with gr.Column(visible = False) as image_to_video_col: start_image = gr.Image(label="The image at the beginning of the video", show_label=True, elem_id="i2v_start", sources="upload", type="filepath") template_gallery_path = ["asset/1.png", "asset/2.png", "asset/3.png", "asset/4.png", "asset/5.png"] def select_template(evt: gr.SelectData): text = { "asset/1.png": "The dog is looking at camera and smiling. The video is of high quality, and the view is very clear. High quality, masterpiece, best quality, highres, ultra-detailed, fantastic.", "asset/2.png": "a sailboat sailing in rough seas with a dramatic sunset. The video is of high quality, and the view is very clear. High quality, masterpiece, best quality, highres, ultra-detailed, fantastic.", "asset/3.png": "a beautiful woman with long hair and a dress blowing in the wind. The video is of high quality, and the view is very clear. High quality, masterpiece, best quality, highres, ultra-detailed, fantastic.", "asset/4.png": "a man in an astronaut suit playing a guitar. The video is of high quality, and the view is very clear. High quality, masterpiece, best quality, highres, ultra-detailed, fantastic.", "asset/5.png": "fireworks display over night city. The video is of high quality, and the view is very clear. High quality, masterpiece, best quality, highres, ultra-detailed, fantastic.", }[template_gallery_path[evt.index]] return template_gallery_path[evt.index], text template_gallery = gr.Gallery( template_gallery_path, columns=5, rows=1, height=140, allow_preview=False, container=False, label="Template Examples", ) template_gallery.select(select_template, None, [start_image, prompt_textbox]) with gr.Accordion("The image at the ending of the video (Optional)", open=False): end_image = gr.Image(label="The image at the ending of the video (Optional)", show_label=True, elem_id="i2v_end", sources="upload", type="filepath") with gr.Column(visible = False) as video_to_video_col: validation_video = gr.Video( label="The video to convert (视频转视频的参考视频)", show_label=True, elem_id="v2v", sources="upload", ) denoise_strength = gr.Slider(label="Denoise strength (重绘系数)", value=0.70, minimum=0.10, maximum=0.95, step=0.01) cfg_scale_slider = gr.Slider(label="CFG Scale (引导系数)", value=7.0, minimum=0, maximum=20) with gr.Row(): seed_textbox = gr.Textbox(label="Seed", value=43) seed_button = gr.Button(value="\U0001F3B2", elem_classes="toolbutton") seed_button.click( fn=lambda: gr.Textbox(value=random.randint(1, 1e8)) if gradio_version_is_above_4 else gr.Textbox.update(value=random.randint(1, 1e8)), inputs=[], outputs=[seed_textbox] ) generate_button = gr.Button(value="Generate", variant='primary') with gr.Column(): result_image = gr.Image(label="Generated Image", interactive=False, visible=False) result_video = gr.Video(label="Generated Animation", interactive=False) infer_progress = gr.Textbox( label="Generation Info", value="No task currently", interactive=False ) def upload_generation_method(generation_method): if generation_method == "Video Generation": return gr.update(visible=True, minimum=5, maximum=49, value=49, interactive=True) elif generation_method == "Image Generation": return gr.update(minimum=1, maximum=1, value=1, interactive=False) generation_method.change( upload_generation_method, generation_method, [length_slider] ) def upload_source_method(source_method): if source_method == "Text to Video (文本到视频)": return [gr.update(visible=False), gr.update(visible=False), gr.update(value=None), gr.update(value=None), gr.update(value=None)] elif source_method == "Image to Video (图片到视频)": return [gr.update(visible=True), gr.update(visible=False), gr.update(), gr.update(), gr.update(value=None)] else: return [gr.update(visible=False), gr.update(visible=True), gr.update(value=None), gr.update(value=None), gr.update()] source_method.change( upload_source_method, source_method, [image_to_video_col, video_to_video_col, start_image, end_image, validation_video] ) def upload_resize_method(resize_method): if resize_method == "Generate by": return [gr.update(visible=True), gr.update(visible=True), gr.update(visible=False)] else: return [gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)] resize_method.change( upload_resize_method, resize_method, [width_slider, height_slider, base_resolution] ) generate_button.click( fn=controller.generate, inputs=[ diffusion_transformer_dropdown, base_model_dropdown, lora_model_dropdown, lora_alpha_slider, prompt_textbox, negative_prompt_textbox, sampler_dropdown, sample_step_slider, resize_method, width_slider, height_slider, base_resolution, generation_method, length_slider, cfg_scale_slider, start_image, end_image, validation_video, denoise_strength, seed_textbox, ], outputs=[result_image, result_video, infer_progress] ) return demo, controller