mnist / app.py
alibayram's picture
Add debug prints for predictions and class names; change ImageEditor to Sketchpad
4af9a59
import numpy as np
import gradio as gr
import tensorflow as tf
import cv2
# Load the trained MNIST model
model = tf.keras.models.load_model("./sketch_recognition_numbers_model.h5")
# Class names (0 to 9)
labels = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
def predict(data):
# Extract the 'composite' key from the input dictionary
img = data["composite"]
img = np.array(img)
# Convert RGBA to RGB if needed
if img.shape[-1] == 4: # RGBA
img = cv2.cvtColor(img, cv2.COLOR_RGBA2RGB)
# Convert RGB to Grayscale
if img.shape[-1] == 3: # RGB
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
# Resize image to 28x28
img = cv2.resize(img, (28, 28))
# Normalize pixel values to [0, 1]
img = img / 255.0
# Reshape to match model input (1, 28, 28, 1)
img = img.reshape(1, 28, 28, 1)
# Model predictions
preds = model.predict(img)[0]
print(preds)
# Get top 3 classes
top_3_classes = np.argsort(preds)[-3:][::-1]
top_3_probs = preds[top_3_classes]
class_names = [labels[i] for i in top_3_classes]
print(class_names, top_3_probs, top_3_classes)
# Return top 3 predictions as a dictionary
return {class_names[i]: float(top_3_probs[i]) for i in range(3)}
# Title and description
title = "Welcome to your first sketch recognition app!"
head = (
"<center>"
"<img src='./mnist-classes.png' width=400>"
"<p>The model is trained to classify numbers (from 0 to 9). "
"To test it, draw your number in the space provided (use the editing tools in the image editor).</p>"
"</center>"
)
ref = "Find the complete code [here](https://github.com/ovh/ai-training-examples/tree/main/apps/gradio/sketch-recognition)."
with gr.Blocks(title=title) as demo:
# Display title and description
gr.Markdown(head)
gr.Markdown(ref)
with gr.Row():
# Using ImageEditor with type='numpy'
im = gr.Sketchpad(type="numpy", label="Draw your digit here (use brush and eraser)")
# Output label (top 3 predictions)
label = gr.Label(num_top_classes=3, label="Predictions")
# Trigger prediction whenever the image changes
im.change(predict, inputs=im, outputs=label)
demo.launch(share=True)