Refactor app.py: update app title and description, simplify label handling, and enhance prediction function
Browse files- app.py +28 -77
- requirements.txt +3 -3
app.py
CHANGED
@@ -1,96 +1,47 @@
|
|
1 |
-
import
|
2 |
import gradio as gr
|
3 |
import tensorflow as tf
|
4 |
import cv2
|
5 |
|
6 |
-
#
|
7 |
-
title = "Welcome
|
8 |
|
9 |
-
#
|
10 |
head = (
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
"</center>"
|
16 |
)
|
17 |
|
18 |
# GitHub repository link
|
19 |
-
ref = "Find the
|
20 |
|
|
|
|
|
21 |
|
22 |
-
#
|
23 |
-
labels =
|
24 |
-
0: "zero",
|
25 |
-
1: "one",
|
26 |
-
2: "two",
|
27 |
-
3: "three",
|
28 |
-
4: "four",
|
29 |
-
5: "five",
|
30 |
-
6: "six",
|
31 |
-
7: "seven",
|
32 |
-
8: "eight",
|
33 |
-
9: "nine"
|
34 |
-
}
|
35 |
-
# Load model (trained on MNIST dataset)
|
36 |
-
model = tf.keras.models.load_model("./sketch_recognition_numbers_model.h5")
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
img = np.array(data['composite'])
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
for i in range(img.shape[0]):
|
45 |
-
for j in range(img.shape[1]):
|
46 |
-
if img[i][j] > 0:
|
47 |
-
print(i, j, img[i][j])
|
48 |
|
49 |
-
|
|
|
|
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
img = cv2.cvtColor(img, cv2.COLOR_RGBA2RGB)
|
54 |
-
if img.shape[-1] == 3: # RGB
|
55 |
-
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
|
56 |
|
57 |
-
|
58 |
-
|
59 |
|
60 |
-
|
61 |
-
|
62 |
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
print("img", img)
|
67 |
-
|
68 |
-
# Model predictions
|
69 |
-
preds = model.predict(img)[0]
|
70 |
-
|
71 |
-
print("preds", preds)
|
72 |
-
values_map = {preds[i]: i for i in range(len(preds))}
|
73 |
-
|
74 |
-
sorted_values = sorted(preds, reverse=True)
|
75 |
-
|
76 |
-
labels_map = dict()
|
77 |
-
for i in range(3):
|
78 |
-
print("sorted_values[i]", sorted_values[i], values_map[sorted_values[i]])
|
79 |
-
labels_map[labels[values_map[sorted_values[i]]]] = sorted_values[i]
|
80 |
-
|
81 |
-
print("labels_map", labels_map)
|
82 |
-
return labels_map
|
83 |
-
|
84 |
-
# Top 3 classes
|
85 |
-
label = gr.Label(num_top_classes=3)
|
86 |
-
|
87 |
-
# Open Gradio interface for sketch recognition
|
88 |
-
interface = gr.Interface(
|
89 |
-
fn=predict,
|
90 |
-
inputs=gr.Sketchpad(type='numpy', image_mode='L', brush=gr.Brush()),
|
91 |
-
outputs=label,
|
92 |
-
title=title,
|
93 |
-
description=head,
|
94 |
-
article=ref
|
95 |
-
)
|
96 |
interface.launch(share=True)
|
|
|
1 |
+
# import dependencies
|
2 |
import gradio as gr
|
3 |
import tensorflow as tf
|
4 |
import cv2
|
5 |
|
6 |
+
# app title
|
7 |
+
title = "Welcome on your first sketch recognition app!"
|
8 |
|
9 |
+
# app description
|
10 |
head = (
|
11 |
+
"<center>"
|
12 |
+
"<img src='file/mnist-classes.png' width=400>"
|
13 |
+
"The robot was trained to classify numbers (from 0 to 9). To test it, write your number in the space provided."
|
14 |
+
"</center>"
|
|
|
15 |
)
|
16 |
|
17 |
# GitHub repository link
|
18 |
+
ref = "Find the whole code [here](https://github.com/ovh/ai-training-examples/tree/main/apps/gradio/sketch-recognition)."
|
19 |
|
20 |
+
# image size: 28x28
|
21 |
+
img_size = 28
|
22 |
|
23 |
+
# classes name (from 0 to 9)
|
24 |
+
labels = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
# load model (trained on MNIST dataset)
|
27 |
+
model = tf.keras.models.load_model("model/sketch_recognition_numbers_model.h5")
|
|
|
28 |
|
29 |
+
# prediction function for sketch recognition
|
30 |
+
def predict(img):
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
# image shape: 28x28x1
|
33 |
+
img = cv2.resize(img, (img_size, img_size))
|
34 |
+
img = img.reshape(1, img_size, img_size, 1)
|
35 |
|
36 |
+
# model predictions
|
37 |
+
preds = model.predict(img)[0]
|
|
|
|
|
|
|
38 |
|
39 |
+
# return the probability for each classe
|
40 |
+
return {label: float(pred) for label, pred in zip(labels, preds)}
|
41 |
|
42 |
+
# top 3 of classes
|
43 |
+
label = gr.outputs.Label(num_top_classes=3)
|
44 |
|
45 |
+
# open Gradio interface for sketch recognition
|
46 |
+
interface = gr.Interface(fn=predict, inputs="sketchpad", outputs=label, title=title, description=head, article=ref)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
interface.launch(share=True)
|
requirements.txt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
1 |
+
gradio==3.0.10
|
2 |
+
tensorflow==2.9.1
|
3 |
+
opencv-python-headless==4.6.0.66
|