Refactor sketch recognition app: simplify image preprocessing, update app description, and enhance prediction function
Browse files
app.py
CHANGED
@@ -1,77 +1,55 @@
|
|
1 |
-
import os
|
2 |
import numpy as np
|
3 |
import cv2
|
4 |
import gradio as gr
|
5 |
import tensorflow as tf
|
6 |
|
7 |
-
#
|
8 |
-
|
9 |
|
10 |
-
#
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
"To test it, write your number in the space provided!</p>"
|
17 |
-
"</center>"
|
18 |
)
|
19 |
-
article = "Find the complete code [here](https://github.com/ovh/ai-training-examples/tree/main/apps/gradio/sketch-recognition)."
|
20 |
|
21 |
-
#
|
|
|
|
|
|
|
22 |
img_size = 28
|
23 |
-
labels = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
|
24 |
|
25 |
-
#
|
26 |
-
|
27 |
-
try:
|
28 |
-
model = tf.keras.models.load_model(model_path)
|
29 |
-
except Exception as e:
|
30 |
-
raise FileNotFoundError(f"Model file '{model_path}' not found or failed to load. {str(e)}")
|
31 |
|
|
|
|
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
Convert PIL
|
36 |
-
"""
|
37 |
-
# Convert PIL to NumPy array
|
38 |
img = np.array(img)
|
39 |
-
|
40 |
-
#
|
41 |
-
if len(img.shape) == 3:
|
42 |
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
|
43 |
|
44 |
-
# Resize to 28x28
|
45 |
img = cv2.resize(img, (img_size, img_size))
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
-
#
|
48 |
-
|
49 |
-
|
50 |
-
# Reshape for model input
|
51 |
-
return img.reshape(1, img_size, img_size, 1)
|
52 |
|
|
|
|
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
Predict the digit class probabilities from the input sketch image.
|
57 |
-
"""
|
58 |
-
try:
|
59 |
-
processed_img = preprocess_image(img)
|
60 |
-
predictions = model.predict(processed_img)[0]
|
61 |
-
return {label: float(pred) for label, pred in zip(labels, predictions)}
|
62 |
-
except Exception as e:
|
63 |
-
return {"error": f"Prediction failed: {str(e)}"}
|
64 |
-
|
65 |
-
|
66 |
-
# Gradio interface
|
67 |
-
interface = gr.Interface(
|
68 |
-
fn=predict,
|
69 |
-
inputs="sketchpad",
|
70 |
-
outputs=gr.Label(num_top_classes=3),
|
71 |
-
title=title,
|
72 |
-
description=description,
|
73 |
-
article=article,
|
74 |
-
)
|
75 |
-
|
76 |
-
# Launch the app
|
77 |
interface.launch()
|
|
|
|
|
1 |
import numpy as np
|
2 |
import cv2
|
3 |
import gradio as gr
|
4 |
import tensorflow as tf
|
5 |
|
6 |
+
# app title
|
7 |
+
title = "Welcome on your first sketch recognition app!"
|
8 |
|
9 |
+
# app description
|
10 |
+
head = (
|
11 |
+
"<center>"
|
12 |
+
"<img src='./mnist-classes.png' width=400>"
|
13 |
+
"The robot was trained to classify numbers (from 0 to 9). To test it, write your number in the space provided."
|
14 |
+
"</center>"
|
|
|
|
|
15 |
)
|
|
|
16 |
|
17 |
+
# GitHub repository link
|
18 |
+
ref = "Find the whole code [here](https://github.com/ovh/ai-training-examples/tree/main/apps/gradio/sketch-recognition)."
|
19 |
+
|
20 |
+
# image size: 28x28
|
21 |
img_size = 28
|
|
|
22 |
|
23 |
+
# classes name (from 0 to 9)
|
24 |
+
labels = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
# load model (trained on MNIST dataset)
|
27 |
+
model = tf.keras.models.load_model("./sketch_recognition_numbers_model.h5")
|
28 |
|
29 |
+
# prediction function for sketch recognition
|
30 |
+
def predict(img):
|
31 |
+
# Convert from PIL to NumPy
|
|
|
|
|
32 |
img = np.array(img)
|
33 |
+
|
34 |
+
# If the image is in RGB format, convert it to grayscale
|
35 |
+
if len(img.shape) == 3:
|
36 |
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
|
37 |
|
38 |
+
# Resize the image to 28x28
|
39 |
img = cv2.resize(img, (img_size, img_size))
|
40 |
+
|
41 |
+
# Reshape to the model's input shape (1,28,28,1)
|
42 |
+
img = img.reshape(1, img_size, img_size, 1)
|
43 |
+
|
44 |
+
# model predictions
|
45 |
+
preds = model.predict(img)[0]
|
46 |
|
47 |
+
# return the probability for each class
|
48 |
+
return {label: float(pred) for label, pred in zip(labels, preds)}
|
|
|
|
|
|
|
49 |
|
50 |
+
# top 3 of classes
|
51 |
+
label = gr.Label(num_top_classes=3)
|
52 |
|
53 |
+
# open Gradio interface for sketch recognition
|
54 |
+
interface = gr.Interface(fn=predict, inputs="sketchpad", outputs=label, title=title, description=head, article=ref)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
interface.launch()
|