Spaces:
Running
Running
File size: 8,142 Bytes
0a4e702 dd78cef 63292fe 2652021 997e5d0 0a4e702 997e5d0 f5ae96c 5851bad 0a4e702 429e471 0a4e702 c18889e 0a4e702 dd78cef 2652021 69140ae 0a4e702 69140ae 0a4e702 69140ae 997e5d0 69140ae 0a4e702 69140ae 08893df dd78cef 0a4e702 69140ae 0a4e702 69140ae 0a4e702 69140ae dd78cef 0a4e702 eafda10 69140ae bcb3488 997e5d0 f848200 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
#from openvino.runtime import Core
import gradio as gr
import numpy as np
from PIL import Image
import cv2
from torchvision import models,transforms
from typing import Iterable
import gradio as gr
from torch import nn
from gradio.themes.base import Base
from gradio.themes.utils import colors, fonts, sizes
import time
import torch
import intel_extension_for_pytorch as ipex
#core = Core()
def conv(in_channels, out_channels):
return nn.Sequential(
nn.ReflectionPad2d(1),
nn.Conv2d(in_channels, out_channels, kernel_size=3),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
class resconv(nn.Module):
def __init__(self,in_features,out_features):
super(resconv,self).__init__()
self.block=nn.Sequential(
nn.ReflectionPad2d(1),
nn.Conv2d(in_features,out_features,3),
nn.InstanceNorm2d(out_features),
nn.ReLU(inplace=True),
nn.ReflectionPad2d(1),
nn.Conv2d(out_features,out_features,3),
nn.InstanceNorm2d(out_features),
nn.ReLU(inplace=True),
)
def forward(self,x):
return x+self.block(x)
def up_conv(in_channels, out_channels):
return nn.Sequential(
nn.ConvTranspose2d(in_channels, out_channels, kernel_size=2, stride=2),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
class ResnUnet(nn.Module):
def __init__(self, out_channels=32,number_of_block=9):
super().__init__()
out_features=64
channels=3
model=[nn.ReflectionPad2d(3),nn.Conv2d(3,out_features,7),nn.InstanceNorm2d(out_features),
nn.ReLU(inplace=True),nn.MaxPool2d(3,stride=2)]
model+=[resconv(out_features,out_features)]
model+=[nn.Conv2d(out_features,out_features*2,3,stride=2,padding=1),nn.InstanceNorm2d(out_features),
nn.ReLU(inplace=True)]
model+=[resconv(out_features*2,out_features*2)]
model+=[nn.Conv2d(out_features*2,out_features*4,3,stride=2,padding=1),nn.InstanceNorm2d(out_features),
nn.ReLU(inplace=True)]
model+=[resconv(out_features*4,out_features*4)]
model+=[nn.Conv2d(out_features*4,out_features*8,3,stride=2,padding=1),nn.InstanceNorm2d(out_features),
nn.ReLU(inplace=True)]
model+=[resconv(out_features*8,out_features*8)]
out_features*=8
input_features=out_features
for _ in range(4):
out_features//=2
model+=[
nn.Upsample(scale_factor=2),
nn.Conv2d(input_features,out_features,3,stride=1,padding=1),
nn.InstanceNorm2d(out_features),
nn.ReLU(inplace=True)
]
input_features=out_features
model+=[nn.ReflectionPad2d(3),nn.Conv2d(32,32,7),
]
self.model=nn.Sequential(*model)
def forward(self,x):
return self.model(x)
model=ResnUnet().to('cpu')
# Load the state_dict
state_dict = torch.load('real_model2_onnx_compat.pt',map_location='cpu')
# Create a new state_dict without the 'module.' prefix
new_state_dict = {}
for key, value in state_dict.items():
new_key = key.replace("module.", "") # Remove the 'module.' prefix
new_state_dict[new_key] = value
# Load the new state_dict into your model
model.load_state_dict(new_state_dict)
model.eval()
model = ipex.optimize(model, weights_prepack=False)
model = torch.compile(model, backend="ipex")
# Read model to OpenVINO Runtime
#model_ir = core.read_model(model="Davinci_eye.onnx")
#compiled_model_ir = core.compile_model(model=model_ir, device_name='CPU')
tfms = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) # imagenet
])
color_map={
(251,244,5): 1,
(37,250,5):2,
(0,21,209):3,
(172,21,2): 4,
(172,21,229): 5,
(6,254,249): 6,
(141,216,23):7,
(96,13,13):8,
(65,214,24):9,
(124,3,252):10,
(214,55,153):11,
(48,61,173):12,
(110,31,254):13,
(249,37,14):14,
(249,137,254):15,
(34,255,113):16,
(169,52,14):17,
(124,49,176):18,
(4,88,238):19,
(115,214,178):20,
(115,63,178):21,
(115,214,235):22,
(63,63,178): 23,
(130,34,26):24,
(220,158,161):25,
(201,117,56):26,
(121,16,40):27,
(15,126,0):28,
(0,50,70):29,
(20,20,0):30,
(20,20,0):31,
}
colormap={v:[i for i in k] for k,v in color_map.items()}
items = {
1: "HarmonicAce_Head",
2: "HarmonicAce_Body",
3: "MarylandBipolarForceps_Head",
4: "MarylandBipolarForceps_Wrist",
5: "MarylandBipolarForceps_Body",
6: "CadiereForceps_Head",
7: "CadiereForceps_Wrist",
8: "CadiereForceps_Body",
9: "CurvedAtraumaticGrasper_Head",
10: "CurvedAtraumaticGrasper_Body",
11: "Stapler_Head",
12: "Stapler_Body",
13: "MediumLargeClipApplier_Head",
14: "MediumLargeClipApplier_Wrist",
15: "MediumLargeClipApplier_Body",
16: "SmallClipApplier_Head",
17: "SmallClipApplier_Wrist",
18: "SmallClipApplier_Body",
19: "SuctionIrrigation",
20: "Needle",
21: "Endotip",
22: "Specimenbag",
23: "DrainTube",
24: "Liver",
25: "Stomach",
26: "Pancreas",
27: "Spleen",
28: "Gallbladder",
29:"Gauze",
30:"TheOther_Instruments",
31:"TheOther_Tissues",
}
class Davinci_Eye(Base):
def __init__(
self,
*,
primary_hue: colors.Color | str = colors.stone,
secondary_hue: colors.Color | str = colors.blue,
neutral_hue: colors.Color | str = colors.gray,
spacing_size: sizes.Size | str = sizes.spacing_md,
radius_size: sizes.Size | str = sizes.radius_md,
text_size: sizes.Size | str = sizes.text_lg,
font: fonts.Font
| str
| Iterable[fonts.Font | str] = (
fonts.GoogleFont("IBM Plex Mono"),
"ui-sans-serif",
"sans-serif",
),
font_mono: fonts.Font
| str
| Iterable[fonts.Font | str] = (
fonts.GoogleFont("IBM Plex Mono"),
"ui-monospace",
"monospace",
),
):
super().__init__(
primary_hue=primary_hue,
secondary_hue=secondary_hue,
neutral_hue=neutral_hue,
spacing_size=spacing_size,
radius_size=radius_size,
text_size=text_size,
font=font,
font_mono=font_mono,
)
davincieye = Davinci_Eye()
def convert_mask_to_rgb(pred_mask):
rgb_mask=np.zeros((pred_mask.shape[0],pred_mask.shape[1],3),dtype=np.uint8)
for k,v in colormap.items():
rgb_mask[pred_mask==k]=v
return rgb_mask
def segment_image(filepath,tag):
image=cv2.imread(filepath)
image=cv2.cvtColor(image,cv2.COLOR_BGR2RGB)
image = cv2.resize(image, (224,224))
x=tfms(image.copy()/255.)
with torch.no_grad():
mask=model(x.unsqueeze(0).float())
#ort_input={ort_session.get_inputs()[0].name:x.cpu().unsqueeze(0).float().numpy()}
#out=ort_session.run(None,ort_input)
_,pred_mask=torch.max(mask,dim=1)
pred_mask=pred_mask[0].numpy()
pred_mask=pred_mask.astype(np.uint8)
color_mask=convert_mask_to_rgb(pred_mask)
masked_image=cv2.addWeighted(image,0.3,color_mask,0.8,0.2)
pred_keys=pred_mask[np.nonzero(pred_mask)]
objects=[items[k] for k in pred_keys]
surgery_items=np.unique(np.array(objects),axis=0)
surg=""
for item in surgery_items:
surg+=item+","+" "
return Image.fromarray(masked_image),surg
demo=gr.Interface(fn=segment_image,inputs=[gr.Image(type='filepath')],
outputs=[gr.Image(type="pil"),gr.Text()],
examples=["R001_ch1_video_03_00-29-13-03.jpg",
"R002_ch1_video_01_01-07-25-19.jpg",
"R003_ch1_video_05_00-22-42-23.jpg",
"R004_ch1_video_01_01-12-22-00.jpg",
"R005_ch1_video_03_00-19-10-11.jpg",
"R006_ch1_video_01_00-45-02-10.jpg",
"R013_ch1_video_03_00-40-17-11.jpg"],
#examples='R001_ch1_video_03_00-29-13-03.jpg',
theme=davincieye.set(loader_color='#65aab1'),
title="Davinci Eye(Quantized for CPU)")
demo.launch() |