duck-seg-yolov8 / app..py
alicenkbaytop's picture
app.py, model, image added!
b2141e9 verified
raw
history blame
1.6 kB
import gradio as gr
import cv2
import requests
import os
from ultralytics import YOLO
file_urls = [
"https://www.dropbox.com/scl/fi/2mlc191y9lzbe8nwu45ss/duck76.jpeg?rlkey=qwnr78mtdy7sjg71ldrui6vf0&dl=0",
"https://www.dropbox.com/scl/fi/2y4cdkwwn3drlh4ob86ic/duck85.jpeg?rlkey=lcl3n0jav7ougsj4tamm1hh93&dl=0",
"https://www.dropbox.com/scl/fi/8gojxnm8wwhs2isj6k4zv/duck23.jpeg?rlkey=2zioinhr0wfpv22qq963tnv8a&dl=0",
]
def download_file(url, save_name):
if not os.path.exists(save_name):
file = requests.get(url)
open(save_name, "wb").write(file.content)
for i, url in enumerate(file_urls):
if "mp4" in url:
download_file(url, "video.mp4")
else:
download_file(url, f"image_{i}.jpg")
model = YOLO("best.pt")
def show_preds_image(image):
outputs = model.predict(source=image)
image_np = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
results = outputs.xyxy[0].cpu().numpy()
for det in results:
cv2.rectangle(
image_np,
(int(det[0]), int(det[1])),
(int(det[2]), int(det[3])),
color=(0, 0, 255),
thickness=2,
lineType=cv2.LINE_AA,
)
return cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
inputs_image = gr.inputs.Image(type="file", label="Input Image")
outputs_image = gr.outputs.Image(type="numpy", label="Output Image")
interface_image = gr.Interface(
fn=show_preds_image,
inputs=inputs_image,
outputs=outputs_image,
title="Duck Image Segmentation",
examples=file_urls,
allow_flagging=False,
)
interface_image.launch()