Spaces:
Runtime error
Runtime error
File size: 24,104 Bytes
e3aae0e f40dace e3aae0e 3a2cc70 e3aae0e 0d75882 e3aae0e f40dace 9aa27c3 e3aae0e 3a2cc70 0d75882 3a2cc70 0d75882 e3aae0e 3a2cc70 e3aae0e 809239e e3aae0e 0d75882 e3aae0e f40dace 0d75882 f40dace e3aae0e f40dace e3aae0e f40dace e3aae0e 0d75882 e3aae0e 0d75882 f40dace e3aae0e 0d75882 e3aae0e 9aa27c3 e3aae0e f40dace 0d75882 e3aae0e f40dace e3aae0e f40dace 9aa27c3 f40dace e3aae0e f40dace e3aae0e 3a2cc70 e3aae0e 0d75882 e3aae0e 3a2cc70 e3aae0e 0d75882 e3aae0e 0d75882 f40dace 0d75882 e3aae0e f40dace 9aa27c3 f40dace 9aa27c3 f40dace 0d75882 1d54b6c 0d75882 e3aae0e f40dace 0d75882 3a2cc70 0d75882 f40dace 0d75882 f40dace 0d75882 3a2cc70 0d75882 f40dace 0d75882 f40dace 0d75882 f40dace e3aae0e f40dace e3aae0e 0d75882 1d54b6c 0d75882 e3aae0e 3a2cc70 1d54b6c e3aae0e 0d75882 e3aae0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 |
import subprocess, torch, os, traceback, sys, warnings, shutil, numpy as np
from mega import Mega
os.environ["no_proxy"] = "localhost, 127.0.0.1, ::1"
import threading
from time import time
from subprocess import Popen
import datetime, requests
now_dir = os.getcwd()
sys.path.append(now_dir)
tmp = os.path.join(now_dir, "TEMP")
shutil.rmtree(tmp, ignore_errors=True)
shutil.rmtree("%s/runtime/Lib/site-packages/infer_pack" % (now_dir), ignore_errors=True)
os.makedirs(tmp, exist_ok=True)
os.makedirs(os.path.join(now_dir, "logs"), exist_ok=True)
os.makedirs(os.path.join(now_dir, "weights"), exist_ok=True)
os.environ["TEMP"] = tmp
warnings.filterwarnings("ignore")
torch.manual_seed(114514)
from i18n import I18nAuto
from lib.infer_pack.models import (
SynthesizerTrnMs256NSFsid,
SynthesizerTrnMs256NSFsid_nono,
SynthesizerTrnMs768NSFsid,
SynthesizerTrnMs768NSFsid_nono,
)
import soundfile as sf
from fairseq import checkpoint_utils
import gradio as gr
import logging
from vc_infer_pipeline import VC
from config import Config
from utils import load_audio, CSVutil
import demucs.separate
import scipy.io.wavfile as wav
from pydub import AudioSegment
DoFormant = False
Quefrency = 1.0
Timbre = 1.0
f0_method = 'rmvpe'
f0_up_key = 0
crepe_hop_length = 120
filter_radius = 3
resample_sr = 1
rms_mix_rate = 0.21
protect = 0.33
index_rate = 0.66
sr_dict = {
"32k": 32000,
"40k": 40000,
"48k": 48000,
}
# essa parte excluir dps
if not os.path.isdir('csvdb/'):
os.makedirs('csvdb')
frmnt, stp = open("csvdb/formanting.csv", 'w'), open("csvdb/stop.csv", 'w')
frmnt.close()
stp.close()
try:
DoFormant, Quefrency, Timbre = CSVutil('csvdb/formanting.csv', 'r', 'formanting')
DoFormant = (
lambda DoFormant: True if DoFormant.lower() == 'true' else (False if DoFormant.lower() == 'false' else DoFormant)
)(DoFormant)
except (ValueError, TypeError, IndexError):
DoFormant, Quefrency, Timbre = False, 1.0, 1.0
CSVutil('csvdb/formanting.csv', 'w+', 'formanting', DoFormant, Quefrency, Timbre)
def download_models():
# Download hubert base model if not present
if not os.path.isfile('./hubert_base.pt'):
response = requests.get('https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/hubert_base.pt')
if response.status_code == 200:
with open('./hubert_base.pt', 'wb') as f:
f.write(response.content)
print("Downloaded hubert base model file successfully. File saved to ./hubert_base.pt.")
else:
raise Exception("Failed to download hubert base model file. Status code: " + str(response.status_code) + ".")
# Download rmvpe model if not present
if not os.path.isfile('./rmvpe.pt'):
response = requests.get('https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/rmvpe.pt')
if response.status_code == 200:
with open('./rmvpe.pt', 'wb') as f:
f.write(response.content)
print("Downloaded rmvpe model file successfully. File saved to ./rmvpe.pt.")
else:
raise Exception("Failed to download rmvpe model file. Status code: " + str(response.status_code) + ".")
download_models()
# Check if we're in a Google Colab environment
if os.path.exists('/content/'):
print("\n-------------------------------\nRVC v2 Easy GUI (Colab Edition)\n-------------------------------\n")
print("-------------------------------")
# Check if the file exists at the specified path
if os.path.exists('/content/Mangio-RVC-Fork/hubert_base.pt'):
# If the file exists, print a statement saying so
print("File /content/Mangio-RVC-Fork/hubert_base.pt already exists. No need to download.")
else:
# If the file doesn't exist, print a statement saying it's downloading
print("File /content/Mangio-RVC-Fork/hubert_base.pt does not exist. Starting download.")
# Make a request to the URL
response = requests.get('https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/hubert_base.pt')
# Ensure the request was successful
if response.status_code == 200:
# If the response was a success, save the content to the specified file path
with open('/content/Mangio-RVC-Fork/hubert_base.pt', 'wb') as f:
f.write(response.content)
print("Download complete. File saved to /content/Mangio-RVC-Fork/hubert_base.pt.")
else:
# If the response was a failure, print an error message
print("Failed to download file. Status code: " + str(response.status_code) + ".")
else:
print("\n-------------------------------\nRVC v2 Easy GUI (Local Edition)\n-------------------------------\n")
print("-------------------------------\nNot running on Google Colab, skipping download.")
i18n = I18nAuto()
ngpu = torch.cuda.device_count()
gpu_infos = []
mem = []
if (not torch.cuda.is_available()) or ngpu == 0:
if_gpu_ok = False
else:
if_gpu_ok = False
for i in range(ngpu):
gpu_name = torch.cuda.get_device_name(i)
if (
"10" in gpu_name
or "16" in gpu_name
or "20" in gpu_name
or "30" in gpu_name
or "40" in gpu_name
or "A2" in gpu_name.upper()
or "A3" in gpu_name.upper()
or "A4" in gpu_name.upper()
or "P4" in gpu_name.upper()
or "A50" in gpu_name.upper()
or "A60" in gpu_name.upper()
or "70" in gpu_name
or "80" in gpu_name
or "90" in gpu_name
or "M4" in gpu_name.upper()
or "T4" in gpu_name.upper()
or "TITAN" in gpu_name.upper()
): # A10#A100#V100#A40#P40#M40#K80#A4500
if_gpu_ok = True # 至少有一张能用的N卡
gpu_infos.append("%s\t%s" % (i, gpu_name))
mem.append(
int(
torch.cuda.get_device_properties(i).total_memory
/ 1024
/ 1024
/ 1024
+ 0.4
)
)
if if_gpu_ok == True and len(gpu_infos) > 0:
gpu_info = "\n".join(gpu_infos)
default_batch_size = min(mem) // 2
else:
gpu_info = i18n("很遗憾您这没有能用的显卡来支持您训练")
default_batch_size = 1
gpus = "-".join([i[0] for i in gpu_infos])
config = Config()
logging.getLogger("numba").setLevel(logging.WARNING)
hubert_model = None
def load_hubert():
global hubert_model
models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
["hubert_base.pt"],
suffix="",
)
hubert_model = models[0]
hubert_model = hubert_model.to(config.device)
if config.is_half:
hubert_model = hubert_model.half()
else:
hubert_model = hubert_model.float()
hubert_model.eval()
weight_root = "weights"
index_root = "logs"
names = []
for name in os.listdir(weight_root):
if name.endswith(".pth"):
names.append(name)
index_paths = []
for root, dirs, files in os.walk(index_root, topdown=False):
for name in files:
if name.endswith(".index") and "trained" not in name:
index_paths.append("%s/%s" % (root, name))
def vc_single(
input_audio,
separate_vocals_bool,
progress = gr.Progress()
):
progress(0, desc="Preparando áudio...")
overlay_audios_bool = False
input_audio_path = input_audio
global tgt_sr, net_g, vc, hubert_model, version
if input_audio_path is None:
return "You need to upload an audio", None
try:
t1 = 0
t2 = 0
if (separate_vocals_bool):
t1 = time()
progress(0.1, desc="Separando vocais...")
path_to_separated_vocals = separate_vocals(input_audio_path)
if (path_to_separated_vocals):
input_audio_path = path_to_separated_vocals
overlay_audios_bool = True
t2 = time()
progress(0.2, desc="Carregando áudio...")
audio = load_audio(input_audio_path, 16000, DoFormant, Quefrency, Timbre)
audio_max = np.abs(audio).max() / 0.95
if audio_max > 1:
audio /= audio_max
times = [0, 0, 0, t2 - t1, 0]
if hubert_model == None:
load_hubert()
if_f0 = cpt.get("f0", 1)
file_index = get_index()
file_index = (
(
file_index.strip(" ")
.strip('"')
.strip("\n")
.strip('"')
.strip(" ")
.replace("trained", "added")
)
)
progress(0.3, desc="Gerando áudio...")
audio_opt = vc.pipeline(
hubert_model,
net_g,
0,
audio,
input_audio_path,
times,
f0_up_key,
f0_method,
file_index,
index_rate,
if_f0,
filter_radius,
40000,
resample_sr,
rms_mix_rate,
version,
protect,
crepe_hop_length,
progress,
f0_file=None,
)
progress(0.8, desc="Áudio convertido...")
if resample_sr >= 16000 and tgt_sr != resample_sr:
tgt_sr = resample_sr
if (overlay_audios_bool):
t1 = time()
progress(0.9, desc="Juntando vocal e instrumental...")
(tgt_sr, audio_opt) = overlay_audios(40000, audio_opt, input_audio_path.replace("vocals", "no_vocals"))
remove_separated_files(input_audio_path)
t2 = time()
times[4] = t2 - t1
return {"visible": True, "__type__": "update", "value": "Áudio convertido com sucesso!\nTempo: %1fs" % (
sum(times),
)}, (tgt_sr, audio_opt)
except:
info = traceback.format_exc()
print(info)
return info, (None, None)
def get_vc(sid):
global n_spk, tgt_sr, net_g, vc, cpt, version
if sid == "" or sid == []:
global hubert_model
if hubert_model != None:
print("clean_empty_cache")
del net_g, n_spk, vc, hubert_model, tgt_sr # ,cpt
hubert_model = net_g = n_spk = vc = hubert_model = tgt_sr = None
if torch.cuda.is_available():
torch.cuda.empty_cache()
if_f0 = cpt.get("f0", 1)
version = cpt.get("version", "v1")
if version == "v1":
if if_f0 == 1:
net_g = SynthesizerTrnMs256NSFsid(
*cpt["config"], is_half=config.is_half
)
else:
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
elif version == "v2":
if if_f0 == 1:
net_g = SynthesizerTrnMs768NSFsid(
*cpt["config"], is_half=config.is_half
)
else:
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
del net_g, cpt
if torch.cuda.is_available():
torch.cuda.empty_cache()
cpt = None
return {"visible": False, "__type__": "update"}
person = "%s/%s" % (weight_root, sid)
print("loading %s" % person)
cpt = torch.load(person, map_location="cpu")
tgt_sr = cpt["config"][-1]
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
if_f0 = cpt.get("f0", 1)
version = cpt.get("version", "v1")
if version == "v1":
if if_f0 == 1:
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
else:
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
elif version == "v2":
if if_f0 == 1:
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half)
else:
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
del net_g.enc_q
print(net_g.load_state_dict(cpt["weight"], strict=False))
net_g.eval().to(config.device)
if config.is_half:
net_g = net_g.half()
else:
net_g = net_g.float()
vc = VC(tgt_sr, config)
n_spk = cpt["config"][-3]
def change_choices():
names = []
for name in os.listdir(weight_root):
if name.endswith(".pth"):
names.append(name)
index_paths = []
for root, dirs, files in os.walk(index_root, topdown=False):
for name in files:
if name.endswith(".index") and "trained" not in name:
index_paths.append("%s/%s" % (root, name))
return {"choices": sorted(names), "__type__": "update"}
def update_dropdowns():
return [change_choices(), change_choices2()]
#region RVC WebUI App
def change_choices2():
audio_files=[]
for filename in os.listdir("./audios"):
if filename.endswith(('.wav','.mp3','.ogg','.flac','.m4a','.aac','.mp4')):
audio_files.append(os.path.join('./audios',filename).replace('\\', '/'))
return {"choices": sorted(audio_files), "__type__": "update"}
audio_files=[]
for filename in os.listdir("./audios"):
if filename.endswith(('.wav','.mp3','.ogg','.flac','.m4a','.aac','.mp4')):
audio_files.append(os.path.join('./audios',filename).replace('\\', '/'))
def get_index():
if check_for_name() != '':
chosen_model=sorted(names)[0].split(".")[0]
logs_path="./logs/"+chosen_model
if os.path.exists(logs_path):
for file in os.listdir(logs_path):
if file.endswith(".index"):
return os.path.join(logs_path, file)
return ''
else:
return ''
return ''
def save_to_wav(record_button):
if record_button is None:
pass
else:
path_to_file=record_button
new_name = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")+'.wav'
new_path='./audios/'+new_name
shutil.move(path_to_file,new_path)
return new_path
def save_to_wav2(dropbox):
file_path=dropbox.name
shutil.move(file_path,'./audios')
return os.path.join('./audios',os.path.basename(file_path))
def check_for_name():
if len(names) > 0:
return sorted(names)[0]
else:
return ''
def download_from_url(url, model):
if url == '':
return "URL cannot be left empty."
if model =='':
return "You need to name your model. For example: My-Model"
url = url.strip()
zip_dirs = ["zips", "unzips"]
for directory in zip_dirs:
if os.path.exists(directory):
shutil.rmtree(directory)
os.makedirs("zips", exist_ok=True)
os.makedirs("unzips", exist_ok=True)
zipfile = model + '.zip'
zipfile_path = './zips/' + zipfile
try:
if "drive.google.com" in url:
subprocess.run(["gdown", url, "--fuzzy", "-O", zipfile_path])
elif "mega.nz" in url:
m = Mega()
m.download_url(url, './zips')
else:
subprocess.run(["wget", url, "-O", zipfile_path])
for filename in os.listdir("./zips"):
if filename.endswith(".zip"):
zipfile_path = os.path.join("./zips/",filename)
shutil.unpack_archive(zipfile_path, "./unzips", 'zip')
else:
return "No zipfile found."
for root, dirs, files in os.walk('./unzips'):
for file in files:
file_path = os.path.join(root, file)
if file.endswith(".index"):
os.mkdir(f'./logs/{model}')
shutil.copy2(file_path,f'./logs/{model}')
elif "G_" not in file and "D_" not in file and file.endswith(".pth"):
shutil.copy(file_path,f'./weights/{model}.pth')
shutil.rmtree("zips")
shutil.rmtree("unzips")
return "Success."
except:
return "There's been an error."
def download_from_youtube(url):
if url == '':
pass
filename = subprocess.getoutput(f'yt-dlp --print filename {url} --format m4a -o "./audios/%(title)s.%(ext)s"')
subprocess.getoutput(f'yt-dlp {url} --format m4a -o "./audios/%(title)s.%(ext)s"')
if os.path.exists(filename):
return filename
def find_vocals(root_directory, target_folder_name, file_name='vocals.wav'):
for root, dirs, files in os.walk(root_directory):
if target_folder_name in dirs:
folder_path = os.path.join(root, target_folder_name)
vocals_path = os.path.join(folder_path, file_name)
if os.path.exists(vocals_path):
return vocals_path
return None
def separate_vocals(audio_path):
audio_name = audio_path[9:-4]
if (os.path.exists(audio_path) and audio_name):
demucs.separate.main(["--two-stems", "vocals", audio_path, "-o", './audios'])
vocals_path = find_vocals('./audios', audio_name)
if vocals_path:
return vocals_path
return None
def pydub_to_np(audio):
return audio.frame_rate, np.array(audio.get_array_of_samples(), dtype=np.float32).reshape((-1, audio.channels)) / (
1 << (8 * audio.sample_width - 1))
def overlay_audios(sample_rate, np_array, accompaniment_path):
if (not os.path.exists(accompaniment_path)):
return (sample_rate, np_array)
converted_vocals_path = accompaniment_path.replace('no_vocals', 'converted_vocals')
wav.write(converted_vocals_path, sample_rate, np_array)
sound1 = AudioSegment.from_file(accompaniment_path)
sound2 = AudioSegment.from_file(converted_vocals_path)
combined = sound2.overlay(sound1)
sample_rate, np_array = pydub_to_np(combined)
return (sample_rate, np_array)
def remove_separated_files(vocals_path):
parent_dir = os.path.dirname(vocals_path)
try:
shutil.rmtree(parent_dir)
print(f"Deleted {parent_dir} folder and its contents")
except FileNotFoundError:
print(f"{parent_dir} folder not found")
except Exception as e:
print(f"An error occurred: {str(e)}")
def hide_output_text():
return {"visible": False, "__type__": "update", "value": ""}
def show_selected_audio(input_audio_path):
return input_audio_path
css = """
.padding {padding-left: 15px; padding-top: 5px;}
"""
with gr.Blocks(theme = gr.themes.Base(), title="Vocais da Loirinha 👱🏻♀️", css=css) as app:
gr.HTML("<h1>Vocais da Loirinha 👱🏻♀️</h1>")
gr.Markdown("""[Repositório no Github](https://github.com/aliceoq/Mangio-RVC-Fork/tree/feat/new-gui) - [Colab](https://colab.research.google.com/drive/1FeIVwiOY2NApKtqlTtMfQGBBmWnZ7pz1?usp=sharing) - [Hugging Face Space](https://huggingface.co/spaces/aliceoq/vozes-da-loirinha)""")
with gr.Tabs():
with gr.TabItem("Inferência"):
with gr.Row().style(equal_height=True):
with gr.Column():
with gr.Row():
model_dropdown = gr.Dropdown(label="1. Selecione a voz:", choices=sorted(names), value=check_for_name())
if check_for_name() != '':
get_vc(sorted(names)[0])
model_dropdown.change(
fn=get_vc,
inputs=[model_dropdown],
outputs=[],
)
gr.HTML("<p>2. Adicione um arquivo de áudio</p>", elem_classes="padding")
yt_link_textbox = gr.Textbox(label="Insira um link para uma música no Youtube:")
download_yt_button = gr.Button("Baixar áudio do vídeo")
dropbox = gr.File(label="OU selecione um arquivo:")
record_button = gr.Audio(source="microphone", label="OU grave o áudio:", type="filepath")
with gr.Column():
with gr.Row():
audio_dropdown = gr.Dropdown(
label="3. Selecione o áudio",
value="",
choices=audio_files,
scale=1
)
refresh_button = gr.Button("Atualizar listas de vozes e áudios", variant="primary", scale=0)
# Events
download_yt_button.click(fn=download_from_youtube, inputs=[yt_link_textbox], outputs=[audio_dropdown])
dropbox.upload(fn=save_to_wav2, inputs=[dropbox], outputs=[audio_dropdown])
dropbox.upload(fn=change_choices2, inputs=[], outputs=[audio_dropdown])
record_button.change(fn=save_to_wav, inputs=[record_button], outputs=[audio_dropdown])
record_button.change(fn=change_choices2, inputs=[], outputs=[audio_dropdown])
refresh_button.click(fn=update_dropdowns, inputs=[], outputs=[model_dropdown, audio_dropdown])
selected_audio = gr.Audio(label="Áudio selecionado", interactive=False)
audio_dropdown.select(show_selected_audio, inputs=[audio_dropdown], outputs=[selected_audio])
separate_checkbox = gr.Checkbox(label="Separar vocais e instrumental",
info="Marque esta opção quando o áudio selecionado NÃO tiver a voz isolada. Os vocais serão extraídos para a conversão e depois reintegrados ao áudio final com os instrumentais. ⚠️ O tempo de conversão pode aumentar significamente com essa opção ativada.")
convert_button = gr.Button("Gerar áudio", variant="primary")
output_audio = gr.Audio(
label="Áudio convertido (Clique nos três pontos para fazer o download)",
type='filepath',
interactive=False,
)
output_audio_textbox = gr.Textbox(label="Resultado", interactive=False, visible=True, placeholder="Nenhum áudio gerado.")
convert_button.click(hide_output_text, outputs=[output_audio_textbox]).then(vc_single, [audio_dropdown, separate_checkbox], [output_audio_textbox, output_audio])
with gr.TabItem("Adicione uma voz"):
with gr.Column():
model_link_textbox = gr.Textbox(label="1. Insira o link para o modelo:", info="A URL inserida deve ser o link no Hugging Face para o download de um arquivo zip que contém o arquivo .pth. Como por exemplo: https://huggingface.co/yaya2169/folkloretaylor/resolve/main/folkloretaylor.zip")
model_name_textbox = gr.Textbox(label="2. Escolha um nome para identificar o modelo:", info="Esse nome deve ser diferente do nome dos modelos (vozes) já existentes!")
download_button = gr.Button("Baixar modelo")
output_download_textbox = gr.Textbox(label="Resultado", interactive=False, placeholder="Nenhum modelo baixado.")
download_button.click(fn=download_from_url, inputs=[model_link_textbox, model_name_textbox], outputs=[output_download_textbox])
with gr.Row():
gr.Markdown(
"""
Original RVC: https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI
Mangio's RVC Fork: https://github.com/Mangio621/Mangio-RVC-Fork
Easy GUI: https://paypal.me/lesantillan
Made with ❤️ by [Alice Oliveira](https://github.com/aliceoq) | Hosted with ❤️ by [Mateus Elias](https://github.com/mateuseap)
"""
)
if config.iscolab or config.paperspace: # Share gradio link for colab and paperspace (FORK FEATURE)
app.queue(concurrency_count=511, max_size=1022).launch(share=True, quiet=True)
else:
app.queue(concurrency_count=511, max_size=1022).launch(share=False, quiet=True)
#endregion |