File size: 24,104 Bytes
e3aae0e
 
 
 
f40dace
e3aae0e
3a2cc70
e3aae0e
 
 
 
 
 
 
 
 
 
 
 
0d75882
 
 
 
 
 
 
 
 
 
 
 
e3aae0e
 
f40dace
9aa27c3
 
e3aae0e
3a2cc70
 
 
 
 
0d75882
3a2cc70
 
 
 
 
0d75882
 
 
 
 
 
 
e3aae0e
3a2cc70
e3aae0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
809239e
 
 
 
 
 
 
 
 
 
 
e3aae0e
 
 
0d75882
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3aae0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f40dace
 
 
0d75882
f40dace
 
 
e3aae0e
 
 
 
f40dace
 
 
 
 
 
 
 
 
 
 
e3aae0e
 
 
 
f40dace
e3aae0e
 
 
0d75882
e3aae0e
 
 
 
 
 
 
 
 
0d75882
f40dace
e3aae0e
 
 
0d75882
e3aae0e
 
 
 
 
 
 
 
 
9aa27c3
e3aae0e
 
 
 
 
f40dace
0d75882
e3aae0e
f40dace
e3aae0e
 
f40dace
 
 
9aa27c3
f40dace
 
 
 
 
 
e3aae0e
 
 
 
 
 
 
 
 
f40dace
e3aae0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a2cc70
e3aae0e
0d75882
 
e3aae0e
 
 
 
 
 
 
3a2cc70
e3aae0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d75882
 
e3aae0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d75882
 
 
 
 
f40dace
0d75882
e3aae0e
f40dace
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9aa27c3
 
 
 
f40dace
 
 
9aa27c3
 
 
 
 
 
 
 
 
 
f40dace
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d75882
 
 
 
 
 
1d54b6c
0d75882
 
 
e3aae0e
 
f40dace
0d75882
 
 
 
 
 
3a2cc70
0d75882
 
 
 
f40dace
0d75882
 
 
 
f40dace
0d75882
 
 
3a2cc70
0d75882
 
 
 
 
 
 
 
 
f40dace
0d75882
f40dace
 
0d75882
f40dace
e3aae0e
 
 
f40dace
 
e3aae0e
0d75882
 
1d54b6c
0d75882
 
 
 
e3aae0e
 
 
3a2cc70
 
1d54b6c
e3aae0e
 
 
0d75882
 
 
 
 
e3aae0e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
import subprocess, torch, os, traceback, sys, warnings, shutil, numpy as np
from mega import Mega
os.environ["no_proxy"] = "localhost, 127.0.0.1, ::1"
import threading
from time import time
from subprocess import Popen
import datetime, requests
now_dir = os.getcwd()
sys.path.append(now_dir)
tmp = os.path.join(now_dir, "TEMP")
shutil.rmtree(tmp, ignore_errors=True)
shutil.rmtree("%s/runtime/Lib/site-packages/infer_pack" % (now_dir), ignore_errors=True)
os.makedirs(tmp, exist_ok=True)
os.makedirs(os.path.join(now_dir, "logs"), exist_ok=True)
os.makedirs(os.path.join(now_dir, "weights"), exist_ok=True)
os.environ["TEMP"] = tmp
warnings.filterwarnings("ignore")
torch.manual_seed(114514)
from i18n import I18nAuto
from lib.infer_pack.models import (
    SynthesizerTrnMs256NSFsid,
    SynthesizerTrnMs256NSFsid_nono,
    SynthesizerTrnMs768NSFsid,
    SynthesizerTrnMs768NSFsid_nono,
)
import soundfile as sf
from fairseq import checkpoint_utils
import gradio as gr
import logging
from vc_infer_pipeline import VC
from config import Config

from utils import load_audio, CSVutil
import demucs.separate
import scipy.io.wavfile as wav
from pydub import AudioSegment

DoFormant = False
Quefrency = 1.0
Timbre = 1.0

f0_method = 'rmvpe' 
f0_up_key = 0
crepe_hop_length = 120
filter_radius = 3
resample_sr = 1
rms_mix_rate = 0.21
protect = 0.33
index_rate = 0.66

sr_dict = {
    "32k": 32000,
    "40k": 40000,
    "48k": 48000,
}

# essa parte excluir dps
if not os.path.isdir('csvdb/'):
    os.makedirs('csvdb')
    frmnt, stp = open("csvdb/formanting.csv", 'w'), open("csvdb/stop.csv", 'w')
    frmnt.close()
    stp.close()

try:
    DoFormant, Quefrency, Timbre = CSVutil('csvdb/formanting.csv', 'r', 'formanting')
    DoFormant = (
        lambda DoFormant: True if DoFormant.lower() == 'true' else (False if DoFormant.lower() == 'false' else DoFormant)
    )(DoFormant)
except (ValueError, TypeError, IndexError):
    DoFormant, Quefrency, Timbre = False, 1.0, 1.0
    CSVutil('csvdb/formanting.csv', 'w+', 'formanting', DoFormant, Quefrency, Timbre)

def download_models():
    # Download hubert base model if not present
    if not os.path.isfile('./hubert_base.pt'):
        response = requests.get('https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/hubert_base.pt')

        if response.status_code == 200:
            with open('./hubert_base.pt', 'wb') as f:
                f.write(response.content)
            print("Downloaded hubert base model file successfully. File saved to ./hubert_base.pt.")
        else:
            raise Exception("Failed to download hubert base model file. Status code: " + str(response.status_code) + ".")
        
    # Download rmvpe model if not present
    if not os.path.isfile('./rmvpe.pt'):
        response = requests.get('https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/rmvpe.pt')

        if response.status_code == 200:
            with open('./rmvpe.pt', 'wb') as f:
                f.write(response.content)
            print("Downloaded rmvpe model file successfully. File saved to ./rmvpe.pt.")
        else:
            raise Exception("Failed to download rmvpe model file. Status code: " + str(response.status_code) + ".")

download_models()

# Check if we're in a Google Colab environment
if os.path.exists('/content/'):
    print("\n-------------------------------\nRVC v2 Easy GUI (Colab Edition)\n-------------------------------\n")

    print("-------------------------------")
        # Check if the file exists at the specified path
    if os.path.exists('/content/Mangio-RVC-Fork/hubert_base.pt'):
        # If the file exists, print a statement saying so
        print("File /content/Mangio-RVC-Fork/hubert_base.pt already exists. No need to download.")
    else:
        # If the file doesn't exist, print a statement saying it's downloading
        print("File /content/Mangio-RVC-Fork/hubert_base.pt does not exist. Starting download.")

        # Make a request to the URL
        response = requests.get('https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/hubert_base.pt')

        # Ensure the request was successful
        if response.status_code == 200:
            # If the response was a success, save the content to the specified file path
            with open('/content/Mangio-RVC-Fork/hubert_base.pt', 'wb') as f:
                f.write(response.content)
            print("Download complete. File saved to /content/Mangio-RVC-Fork/hubert_base.pt.")
        else:
            # If the response was a failure, print an error message
            print("Failed to download file. Status code: " + str(response.status_code) + ".")
else:
    print("\n-------------------------------\nRVC v2 Easy GUI (Local Edition)\n-------------------------------\n")
    print("-------------------------------\nNot running on Google Colab, skipping download.")

i18n = I18nAuto()
ngpu = torch.cuda.device_count()
gpu_infos = []
mem = []
if (not torch.cuda.is_available()) or ngpu == 0:
    if_gpu_ok = False
else:
    if_gpu_ok = False
    for i in range(ngpu):
        gpu_name = torch.cuda.get_device_name(i)
        if (
            "10" in gpu_name
            or "16" in gpu_name
            or "20" in gpu_name
            or "30" in gpu_name
            or "40" in gpu_name
            or "A2" in gpu_name.upper()
            or "A3" in gpu_name.upper()
            or "A4" in gpu_name.upper()
            or "P4" in gpu_name.upper()
            or "A50" in gpu_name.upper()
            or "A60" in gpu_name.upper()
            or "70" in gpu_name
            or "80" in gpu_name
            or "90" in gpu_name
            or "M4" in gpu_name.upper()
            or "T4" in gpu_name.upper()
            or "TITAN" in gpu_name.upper()
        ):  # A10#A100#V100#A40#P40#M40#K80#A4500
            if_gpu_ok = True  # 至少有一张能用的N卡
            gpu_infos.append("%s\t%s" % (i, gpu_name))
            mem.append(
                int(
                    torch.cuda.get_device_properties(i).total_memory
                    / 1024
                    / 1024
                    / 1024
                    + 0.4
                )
            )
if if_gpu_ok == True and len(gpu_infos) > 0:
    gpu_info = "\n".join(gpu_infos)
    default_batch_size = min(mem) // 2
else:
    gpu_info = i18n("很遗憾您这没有能用的显卡来支持您训练")
    default_batch_size = 1
gpus = "-".join([i[0] for i in gpu_infos])

config = Config()
logging.getLogger("numba").setLevel(logging.WARNING)

hubert_model = None

def load_hubert():
    global hubert_model
    models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
        ["hubert_base.pt"],
        suffix="",
    )
    hubert_model = models[0]
    hubert_model = hubert_model.to(config.device)
    if config.is_half:
        hubert_model = hubert_model.half()
    else:
        hubert_model = hubert_model.float()
    hubert_model.eval()

weight_root = "weights"
index_root = "logs"
names = []
for name in os.listdir(weight_root):
    if name.endswith(".pth"):
        names.append(name)
index_paths = []
for root, dirs, files in os.walk(index_root, topdown=False):
    for name in files:
        if name.endswith(".index") and "trained" not in name:
            index_paths.append("%s/%s" % (root, name))

def vc_single(
    input_audio,
    separate_vocals_bool,
    progress = gr.Progress()
):
    progress(0, desc="Preparando áudio...")
    overlay_audios_bool = False
    input_audio_path = input_audio
    global tgt_sr, net_g, vc, hubert_model, version
    if input_audio_path is None:
        return "You need to upload an audio", None
    try:
        t1 = 0
        t2 = 0
        if (separate_vocals_bool):
            t1 = time()
            progress(0.1, desc="Separando vocais...")
            path_to_separated_vocals = separate_vocals(input_audio_path)
            if (path_to_separated_vocals):
                input_audio_path = path_to_separated_vocals
                overlay_audios_bool = True
            t2 = time()
        progress(0.2, desc="Carregando áudio...")
        audio = load_audio(input_audio_path, 16000, DoFormant, Quefrency, Timbre)
        audio_max = np.abs(audio).max() / 0.95
        if audio_max > 1:
            audio /= audio_max
        times = [0, 0, 0, t2 - t1, 0]
        if hubert_model == None:
            load_hubert()
        if_f0 = cpt.get("f0", 1)
        file_index = get_index()
        file_index = (
            (
                file_index.strip(" ")
                .strip('"')
                .strip("\n")
                .strip('"')
                .strip(" ")
                .replace("trained", "added")
            )
        )
        progress(0.3, desc="Gerando áudio...")
        audio_opt = vc.pipeline(
            hubert_model,
            net_g,
            0,
            audio,
            input_audio_path,
            times,
            f0_up_key,
            f0_method,
            file_index,
            index_rate,
            if_f0,
            filter_radius,
            40000,
            resample_sr,
            rms_mix_rate,
            version,
            protect,
            crepe_hop_length,
            progress,
            f0_file=None,
        )
        progress(0.8, desc="Áudio convertido...")
        if resample_sr >= 16000 and tgt_sr != resample_sr:
            tgt_sr = resample_sr
        if (overlay_audios_bool):
            t1 = time()
            progress(0.9, desc="Juntando vocal e instrumental...")
            (tgt_sr, audio_opt) = overlay_audios(40000, audio_opt, input_audio_path.replace("vocals", "no_vocals"))
            remove_separated_files(input_audio_path)
            t2 = time()
        times[4] = t2 - t1
        return {"visible": True, "__type__": "update", "value": "Áudio convertido com sucesso!\nTempo: %1fs" % (
            sum(times),
        )}, (tgt_sr, audio_opt)
    except:
        info = traceback.format_exc()
        print(info)
        return info, (None, None)

def get_vc(sid):
    global n_spk, tgt_sr, net_g, vc, cpt, version
    if sid == "" or sid == []:
        global hubert_model
        if hubert_model != None:
            print("clean_empty_cache")
            del net_g, n_spk, vc, hubert_model, tgt_sr  # ,cpt
            hubert_model = net_g = n_spk = vc = hubert_model = tgt_sr = None
            if torch.cuda.is_available():
                torch.cuda.empty_cache()
            if_f0 = cpt.get("f0", 1)
            version = cpt.get("version", "v1")
            if version == "v1":
                if if_f0 == 1:
                    net_g = SynthesizerTrnMs256NSFsid(
                        *cpt["config"], is_half=config.is_half
                    )
                else:
                    net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
            elif version == "v2":
                if if_f0 == 1:
                    net_g = SynthesizerTrnMs768NSFsid(
                        *cpt["config"], is_half=config.is_half
                    )
                else:
                    net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
            del net_g, cpt
            if torch.cuda.is_available():
                torch.cuda.empty_cache()
            cpt = None
        return {"visible": False, "__type__": "update"}
    person = "%s/%s" % (weight_root, sid)
    print("loading %s" % person)
    cpt = torch.load(person, map_location="cpu")
    tgt_sr = cpt["config"][-1]
    cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]  # n_spk
    if_f0 = cpt.get("f0", 1)
    version = cpt.get("version", "v1")
    if version == "v1":
        if if_f0 == 1:
            net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
        else:
            net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
    elif version == "v2":
        if if_f0 == 1:
            net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half)
        else:
            net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
    del net_g.enc_q
    print(net_g.load_state_dict(cpt["weight"], strict=False))
    net_g.eval().to(config.device)
    if config.is_half:
        net_g = net_g.half()
    else:
        net_g = net_g.float()
    vc = VC(tgt_sr, config)
    n_spk = cpt["config"][-3]

def change_choices():
    names = []
    for name in os.listdir(weight_root):
        if name.endswith(".pth"):
            names.append(name)
    index_paths = []
    for root, dirs, files in os.walk(index_root, topdown=False):
        for name in files:
            if name.endswith(".index") and "trained" not in name:
                index_paths.append("%s/%s" % (root, name))
    return {"choices": sorted(names), "__type__": "update"}

def update_dropdowns():
    return [change_choices(), change_choices2()]

#region RVC WebUI App
def change_choices2():
    audio_files=[]
    for filename in os.listdir("./audios"):
        if filename.endswith(('.wav','.mp3','.ogg','.flac','.m4a','.aac','.mp4')):
            audio_files.append(os.path.join('./audios',filename).replace('\\', '/'))
    return {"choices": sorted(audio_files), "__type__": "update"}
    
audio_files=[]
for filename in os.listdir("./audios"):
    if filename.endswith(('.wav','.mp3','.ogg','.flac','.m4a','.aac','.mp4')):
        audio_files.append(os.path.join('./audios',filename).replace('\\', '/'))
        
def get_index():
    if check_for_name() != '':
        chosen_model=sorted(names)[0].split(".")[0]
        logs_path="./logs/"+chosen_model
        if os.path.exists(logs_path):
            for file in os.listdir(logs_path):
                if file.endswith(".index"):
                    return os.path.join(logs_path, file)
            return ''
        else:
            return ''
    return ''

def save_to_wav(record_button):
    if record_button is None:
        pass
    else:
        path_to_file=record_button
        new_name = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")+'.wav'
        new_path='./audios/'+new_name
        shutil.move(path_to_file,new_path)
        return new_path
    
def save_to_wav2(dropbox):
    file_path=dropbox.name
    shutil.move(file_path,'./audios')
    return os.path.join('./audios',os.path.basename(file_path))
                
def check_for_name():
    if len(names) > 0:
        return sorted(names)[0]
    else:
        return ''
            
def download_from_url(url, model):
    if url == '':
        return "URL cannot be left empty."
    if model =='':
        return "You need to name your model. For example: My-Model"
    url = url.strip()
    zip_dirs = ["zips", "unzips"]
    for directory in zip_dirs:
        if os.path.exists(directory):
            shutil.rmtree(directory)
    os.makedirs("zips", exist_ok=True)
    os.makedirs("unzips", exist_ok=True)
    zipfile = model + '.zip'
    zipfile_path = './zips/' + zipfile
    try:
        if "drive.google.com" in url:
            subprocess.run(["gdown", url, "--fuzzy", "-O", zipfile_path])
        elif "mega.nz" in url:
            m = Mega()
            m.download_url(url, './zips')
        else:
            subprocess.run(["wget", url, "-O", zipfile_path])
        for filename in os.listdir("./zips"):
            if filename.endswith(".zip"):
                zipfile_path = os.path.join("./zips/",filename)
                shutil.unpack_archive(zipfile_path, "./unzips", 'zip')
            else:
                return "No zipfile found."
        for root, dirs, files in os.walk('./unzips'):
            for file in files:
                file_path = os.path.join(root, file)
                if file.endswith(".index"):
                    os.mkdir(f'./logs/{model}')
                    shutil.copy2(file_path,f'./logs/{model}')
                elif "G_" not in file and "D_" not in file and file.endswith(".pth"):
                    shutil.copy(file_path,f'./weights/{model}.pth')
        shutil.rmtree("zips")
        shutil.rmtree("unzips")
        return "Success."
    except:
        return "There's been an error."

def download_from_youtube(url):
    if url == '':
        pass
    filename = subprocess.getoutput(f'yt-dlp --print filename {url} --format m4a -o "./audios/%(title)s.%(ext)s"')
    subprocess.getoutput(f'yt-dlp {url} --format m4a -o "./audios/%(title)s.%(ext)s"')
    if os.path.exists(filename):
        return filename

def find_vocals(root_directory, target_folder_name, file_name='vocals.wav'):
    for root, dirs, files in os.walk(root_directory):
        if target_folder_name in dirs:
            folder_path = os.path.join(root, target_folder_name)
            vocals_path = os.path.join(folder_path, file_name)
            if os.path.exists(vocals_path):
                return vocals_path
    return None

def separate_vocals(audio_path):
    audio_name = audio_path[9:-4]
    if (os.path.exists(audio_path) and audio_name):
        demucs.separate.main(["--two-stems", "vocals", audio_path, "-o", './audios'])
        vocals_path = find_vocals('./audios', audio_name)
        if vocals_path:
            return vocals_path
    return None

def pydub_to_np(audio):
    return audio.frame_rate, np.array(audio.get_array_of_samples(), dtype=np.float32).reshape((-1, audio.channels)) / (
            1 << (8 * audio.sample_width - 1))

def overlay_audios(sample_rate, np_array, accompaniment_path):
    if (not os.path.exists(accompaniment_path)):
        return (sample_rate, np_array)
    
    converted_vocals_path = accompaniment_path.replace('no_vocals', 'converted_vocals')
    wav.write(converted_vocals_path, sample_rate, np_array)

    sound1 = AudioSegment.from_file(accompaniment_path)
    sound2 = AudioSegment.from_file(converted_vocals_path)

    combined = sound2.overlay(sound1)
    sample_rate, np_array = pydub_to_np(combined)
    return (sample_rate, np_array)

def remove_separated_files(vocals_path):
    parent_dir = os.path.dirname(vocals_path)
    try:
        shutil.rmtree(parent_dir)
        print(f"Deleted {parent_dir} folder and its contents")
    except FileNotFoundError:
        print(f"{parent_dir} folder not found")
    except Exception as e:
        print(f"An error occurred: {str(e)}")

def hide_output_text():
    return {"visible": False, "__type__": "update", "value": ""}

def show_selected_audio(input_audio_path):
    return input_audio_path

css = """
.padding {padding-left: 15px; padding-top: 5px;}
"""

with gr.Blocks(theme = gr.themes.Base(), title="Vocais da Loirinha 👱🏻‍♀️", css=css) as app:
    gr.HTML("<h1>Vocais da Loirinha 👱🏻‍♀️</h1>")
    gr.Markdown("""[Repositório no Github](https://github.com/aliceoq/Mangio-RVC-Fork/tree/feat/new-gui) - [Colab](https://colab.research.google.com/drive/1FeIVwiOY2NApKtqlTtMfQGBBmWnZ7pz1?usp=sharing) - [Hugging Face Space](https://huggingface.co/spaces/aliceoq/vozes-da-loirinha)""")
    with gr.Tabs():        
        with gr.TabItem("Inferência"):
            with gr.Row().style(equal_height=True):
                with gr.Column():
                    with gr.Row():
                        model_dropdown = gr.Dropdown(label="1. Selecione a voz:", choices=sorted(names), value=check_for_name())
                        if check_for_name() != '':
                            get_vc(sorted(names)[0])
                        model_dropdown.change(
                            fn=get_vc,
                            inputs=[model_dropdown],
                            outputs=[],
                        )
                    gr.HTML("<p>2. Adicione um arquivo de áudio</p>", elem_classes="padding")
                    yt_link_textbox = gr.Textbox(label="Insira um link para uma música no Youtube:")
                    download_yt_button = gr.Button("Baixar áudio do vídeo")
                    dropbox = gr.File(label="OU selecione um arquivo:")
                    record_button = gr.Audio(source="microphone", label="OU grave o áudio:", type="filepath")
                        
                with gr.Column():
                    with gr.Row():
                        audio_dropdown = gr.Dropdown(
                            label="3. Selecione o áudio",
                            value="",
                            choices=audio_files,
                            scale=1
                        )
                        refresh_button = gr.Button("Atualizar listas de vozes e áudios", variant="primary", scale=0)
                        # Events
                        download_yt_button.click(fn=download_from_youtube, inputs=[yt_link_textbox], outputs=[audio_dropdown])
                        dropbox.upload(fn=save_to_wav2, inputs=[dropbox], outputs=[audio_dropdown])
                        dropbox.upload(fn=change_choices2, inputs=[], outputs=[audio_dropdown])
                        record_button.change(fn=save_to_wav, inputs=[record_button], outputs=[audio_dropdown])
                        record_button.change(fn=change_choices2, inputs=[], outputs=[audio_dropdown])
                        refresh_button.click(fn=update_dropdowns, inputs=[], outputs=[model_dropdown, audio_dropdown])
                    selected_audio = gr.Audio(label="Áudio selecionado", interactive=False)
                    audio_dropdown.select(show_selected_audio, inputs=[audio_dropdown], outputs=[selected_audio])
                    separate_checkbox = gr.Checkbox(label="Separar vocais e instrumental", 
                                                    info="Marque esta opção quando o áudio selecionado NÃO tiver a voz isolada. Os vocais serão extraídos para a conversão e depois reintegrados ao áudio final com os instrumentais. ⚠️ O tempo de conversão pode aumentar significamente com essa opção ativada.")
                    convert_button = gr.Button("Gerar áudio", variant="primary")
                    output_audio = gr.Audio(
                        label="Áudio convertido (Clique nos três pontos para fazer o download)",
                        type='filepath',
                        interactive=False,
                    )
                    output_audio_textbox = gr.Textbox(label="Resultado", interactive=False, visible=True, placeholder="Nenhum áudio gerado.")           
                    convert_button.click(hide_output_text, outputs=[output_audio_textbox]).then(vc_single, [audio_dropdown, separate_checkbox], [output_audio_textbox, output_audio])
                        
        with gr.TabItem("Adicione uma voz"):
            with gr.Column():
                model_link_textbox = gr.Textbox(label="1. Insira o link para o modelo:", info="A URL inserida deve ser o link no Hugging Face para o download de um arquivo zip que contém o arquivo .pth. Como por exemplo: https://huggingface.co/yaya2169/folkloretaylor/resolve/main/folkloretaylor.zip")
                model_name_textbox = gr.Textbox(label="2. Escolha um nome para identificar o modelo:", info="Esse nome deve ser diferente do nome dos modelos (vozes) já existentes!")
                download_button = gr.Button("Baixar modelo")
                output_download_textbox = gr.Textbox(label="Resultado", interactive=False, placeholder="Nenhum modelo baixado.")
                download_button.click(fn=download_from_url, inputs=[model_link_textbox, model_name_textbox], outputs=[output_download_textbox])
            with gr.Row():
                gr.Markdown(
                """
                Original RVC: https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI
                Mangio's RVC Fork: https://github.com/Mangio621/Mangio-RVC-Fork
                Easy GUI: https://paypal.me/lesantillan
                Made with ❤️ by [Alice Oliveira](https://github.com/aliceoq) | Hosted with ❤️ by [Mateus Elias](https://github.com/mateuseap)
                """
                )
    
    if config.iscolab or config.paperspace: # Share gradio link for colab and paperspace (FORK FEATURE)
        app.queue(concurrency_count=511, max_size=1022).launch(share=True, quiet=True)
    else:
        app.queue(concurrency_count=511, max_size=1022).launch(share=False, quiet=True)
#endregion