import subprocess, torch, os, traceback, sys, warnings, shutil, numpy as np from mega import Mega os.environ["no_proxy"] = "localhost, 127.0.0.1, ::1" import threading from time import time from subprocess import Popen import datetime, requests now_dir = os.getcwd() sys.path.append(now_dir) tmp = os.path.join(now_dir, "TEMP") shutil.rmtree(tmp, ignore_errors=True) shutil.rmtree("%s/runtime/Lib/site-packages/infer_pack" % (now_dir), ignore_errors=True) os.makedirs(tmp, exist_ok=True) os.makedirs(os.path.join(now_dir, "logs"), exist_ok=True) os.makedirs(os.path.join(now_dir, "weights"), exist_ok=True) os.environ["TEMP"] = tmp warnings.filterwarnings("ignore") torch.manual_seed(114514) from i18n import I18nAuto from lib.infer_pack.models import ( SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono, SynthesizerTrnMs768NSFsid, SynthesizerTrnMs768NSFsid_nono, ) import soundfile as sf from fairseq import checkpoint_utils import gradio as gr import logging from vc_infer_pipeline import VC from config import Config from utils import load_audio, CSVutil import demucs.separate import audiosegment DoFormant = False Quefrency = 1.0 Timbre = 1.0 f0_method = 'rmvpe' f0_up_key = 0 crepe_hop_length = 120 filter_radius = 3 resample_sr = 1 rms_mix_rate = 0.21 protect = 0.33 index_rate = 0.66 sr_dict = { "32k": 32000, "40k": 40000, "48k": 48000, } # essa parte excluir dps if not os.path.isdir('csvdb/'): os.makedirs('csvdb') frmnt, stp = open("csvdb/formanting.csv", 'w'), open("csvdb/stop.csv", 'w') frmnt.close() stp.close() try: DoFormant, Quefrency, Timbre = CSVutil('csvdb/formanting.csv', 'r', 'formanting') DoFormant = ( lambda DoFormant: True if DoFormant.lower() == 'true' else (False if DoFormant.lower() == 'false' else DoFormant) )(DoFormant) except (ValueError, TypeError, IndexError): DoFormant, Quefrency, Timbre = False, 1.0, 1.0 CSVutil('csvdb/formanting.csv', 'w+', 'formanting', DoFormant, Quefrency, Timbre) def download_models(): # Download hubert base model if not present if not os.path.isfile('./hubert_base.pt'): response = requests.get('https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/hubert_base.pt') if response.status_code == 200: with open('./hubert_base.pt', 'wb') as f: f.write(response.content) print("Downloaded hubert base model file successfully. File saved to ./hubert_base.pt.") else: raise Exception("Failed to download hubert base model file. Status code: " + str(response.status_code) + ".") # Download rmvpe model if not present if not os.path.isfile('./rmvpe.pt'): response = requests.get('https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/rmvpe.pt') if response.status_code == 200: with open('./rmvpe.pt', 'wb') as f: f.write(response.content) print("Downloaded rmvpe model file successfully. File saved to ./rmvpe.pt.") else: raise Exception("Failed to download rmvpe model file. Status code: " + str(response.status_code) + ".") download_models() # Check if we're in a Google Colab environment if os.path.exists('/content/'): print("\n-------------------------------\nRVC v2 Easy GUI (Colab Edition)\n-------------------------------\n") print("-------------------------------") # Check if the file exists at the specified path if os.path.exists('/content/Mangio-RVC-Fork/hubert_base.pt'): # If the file exists, print a statement saying so print("File /content/Mangio-RVC-Fork/hubert_base.pt already exists. No need to download.") else: # If the file doesn't exist, print a statement saying it's downloading print("File /content/Mangio-RVC-Fork/hubert_base.pt does not exist. Starting download.") # Make a request to the URL response = requests.get('https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/hubert_base.pt') # Ensure the request was successful if response.status_code == 200: # If the response was a success, save the content to the specified file path with open('/content/Mangio-RVC-Fork/hubert_base.pt', 'wb') as f: f.write(response.content) print("Download complete. File saved to /content/Mangio-RVC-Fork/hubert_base.pt.") else: # If the response was a failure, print an error message print("Failed to download file. Status code: " + str(response.status_code) + ".") else: print("\n-------------------------------\nRVC v2 Easy GUI (Local Edition)\n-------------------------------\n") print("-------------------------------\nNot running on Google Colab, skipping download.") i18n = I18nAuto() ngpu = torch.cuda.device_count() gpu_infos = [] mem = [] if (not torch.cuda.is_available()) or ngpu == 0: if_gpu_ok = False else: if_gpu_ok = False for i in range(ngpu): gpu_name = torch.cuda.get_device_name(i) if ( "10" in gpu_name or "16" in gpu_name or "20" in gpu_name or "30" in gpu_name or "40" in gpu_name or "A2" in gpu_name.upper() or "A3" in gpu_name.upper() or "A4" in gpu_name.upper() or "P4" in gpu_name.upper() or "A50" in gpu_name.upper() or "A60" in gpu_name.upper() or "70" in gpu_name or "80" in gpu_name or "90" in gpu_name or "M4" in gpu_name.upper() or "T4" in gpu_name.upper() or "TITAN" in gpu_name.upper() ): # A10#A100#V100#A40#P40#M40#K80#A4500 if_gpu_ok = True # 至少有一张能用的N卡 gpu_infos.append("%s\t%s" % (i, gpu_name)) mem.append( int( torch.cuda.get_device_properties(i).total_memory / 1024 / 1024 / 1024 + 0.4 ) ) if if_gpu_ok == True and len(gpu_infos) > 0: gpu_info = "\n".join(gpu_infos) default_batch_size = min(mem) // 2 else: gpu_info = i18n("很遗憾您这没有能用的显卡来支持您训练") default_batch_size = 1 gpus = "-".join([i[0] for i in gpu_infos]) config = Config() logging.getLogger("numba").setLevel(logging.WARNING) hubert_model = None def load_hubert(): global hubert_model models, _, _ = checkpoint_utils.load_model_ensemble_and_task( ["hubert_base.pt"], suffix="", ) hubert_model = models[0] hubert_model = hubert_model.to(config.device) if config.is_half: hubert_model = hubert_model.half() else: hubert_model = hubert_model.float() hubert_model.eval() weight_root = "weights" index_root = "logs" names = [] for name in os.listdir(weight_root): if name.endswith(".pth"): names.append(name) index_paths = [] for root, dirs, files in os.walk(index_root, topdown=False): for name in files: if name.endswith(".index") and "trained" not in name: index_paths.append("%s/%s" % (root, name)) def vc_single( input_audio, separate_vocals_bool, progress = gr.Progress() ): progress(0, desc="Preparando áudio...") overlay_audios_bool = False input_audio_path = input_audio global tgt_sr, net_g, vc, hubert_model, version if input_audio_path is None: return "You need to upload an audio", None try: t1 = 0 t2 = 0 if (separate_vocals_bool): t1 = time() progress(0.1, desc="Separando vocais...") path_to_separated_vocals = separate_vocals(input_audio_path) if (path_to_separated_vocals): input_audio_path = path_to_separated_vocals overlay_audios_bool = True t2 = time() progress(0.2, desc="Carregando áudio...") audio = load_audio(input_audio_path, 16000, DoFormant, Quefrency, Timbre) audio_max = np.abs(audio).max() / 0.95 if audio_max > 1: audio /= audio_max times = [0, 0, 0, t2 - t1, 0] if hubert_model == None: load_hubert() if_f0 = cpt.get("f0", 1) file_index = get_index() file_index = ( ( file_index.strip(" ") .strip('"') .strip("\n") .strip('"') .strip(" ") .replace("trained", "added") ) ) progress(0.3, desc="Gerando áudio...") audio_opt = vc.pipeline( hubert_model, net_g, 0, audio, input_audio_path, times, f0_up_key, f0_method, file_index, index_rate, if_f0, filter_radius, tgt_sr, resample_sr, rms_mix_rate, version, protect, crepe_hop_length, progress, f0_file=None, ) progress(0.8, desc="Áudio convertido...") if resample_sr >= 16000 and tgt_sr != resample_sr: tgt_sr = resample_sr if (overlay_audios_bool): t1 = time() progress(0.9, desc="Juntando vocal e instrumental...") (tgt_sr, audio_opt) = overlay_audios(tgt_sr, audio_opt, input_audio_path.replace("vocals", "no_vocals")) remove_separated_files(input_audio_path) t2 = time() times[4] = t2 - t1 return {"visible": True, "__type__": "update", "value": "Áudio convertido com sucesso!\nTempo: %1fs" % ( sum(times), )}, (tgt_sr, audio_opt) except: info = traceback.format_exc() print(info) return info, (None, None) def get_vc(sid): global n_spk, tgt_sr, net_g, vc, cpt, version if sid == "" or sid == []: global hubert_model if hubert_model != None: print("clean_empty_cache") del net_g, n_spk, vc, hubert_model, tgt_sr # ,cpt hubert_model = net_g = n_spk = vc = hubert_model = tgt_sr = None if torch.cuda.is_available(): torch.cuda.empty_cache() if_f0 = cpt.get("f0", 1) version = cpt.get("version", "v1") if version == "v1": if if_f0 == 1: net_g = SynthesizerTrnMs256NSFsid( *cpt["config"], is_half=config.is_half ) else: net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) elif version == "v2": if if_f0 == 1: net_g = SynthesizerTrnMs768NSFsid( *cpt["config"], is_half=config.is_half ) else: net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"]) del net_g, cpt if torch.cuda.is_available(): torch.cuda.empty_cache() cpt = None return {"visible": False, "__type__": "update"} person = "%s/%s" % (weight_root, sid) print("loading %s" % person) cpt = torch.load(person, map_location="cpu") tgt_sr = cpt["config"][-1] cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk if_f0 = cpt.get("f0", 1) version = cpt.get("version", "v1") if version == "v1": if if_f0 == 1: net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half) else: net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) elif version == "v2": if if_f0 == 1: net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half) else: net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"]) del net_g.enc_q print(net_g.load_state_dict(cpt["weight"], strict=False)) net_g.eval().to(config.device) if config.is_half: net_g = net_g.half() else: net_g = net_g.float() vc = VC(tgt_sr, config) n_spk = cpt["config"][-3] def change_choices(): names = [] for name in os.listdir(weight_root): if name.endswith(".pth"): names.append(name) index_paths = [] for root, dirs, files in os.walk(index_root, topdown=False): for name in files: if name.endswith(".index") and "trained" not in name: index_paths.append("%s/%s" % (root, name)) return {"choices": sorted(names), "__type__": "update"} def update_dropdowns(): return [change_choices(), change_choices2()] #region RVC WebUI App def change_choices2(): audio_files=[] for filename in os.listdir("./audios"): if filename.endswith(('.wav','.mp3','.ogg','.flac','.m4a','.aac','.mp4')): audio_files.append(os.path.join('./audios',filename).replace('\\', '/')) return {"choices": sorted(audio_files), "__type__": "update"} audio_files=[] for filename in os.listdir("./audios"): if filename.endswith(('.wav','.mp3','.ogg','.flac','.m4a','.aac','.mp4')): audio_files.append(os.path.join('./audios',filename).replace('\\', '/')) def get_index(): if check_for_name() != '': chosen_model=sorted(names)[0].split(".")[0] logs_path="./logs/"+chosen_model if os.path.exists(logs_path): for file in os.listdir(logs_path): if file.endswith(".index"): return os.path.join(logs_path, file) return '' else: return '' return '' def save_to_wav(record_button): if record_button is None: pass else: path_to_file=record_button new_name = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")+'.wav' new_path='./audios/'+new_name shutil.move(path_to_file,new_path) return new_path def save_to_wav2(dropbox): file_path=dropbox.name shutil.move(file_path,'./audios') return os.path.join('./audios',os.path.basename(file_path)) def check_for_name(): if len(names) > 0: return sorted(names)[0] else: return '' def download_from_url(url, model): if url == '': return "URL cannot be left empty." if model =='': return "You need to name your model. For example: My-Model" url = url.strip() zip_dirs = ["zips", "unzips"] for directory in zip_dirs: if os.path.exists(directory): shutil.rmtree(directory) os.makedirs("zips", exist_ok=True) os.makedirs("unzips", exist_ok=True) zipfile = model + '.zip' zipfile_path = './zips/' + zipfile try: if "drive.google.com" in url: subprocess.run(["gdown", url, "--fuzzy", "-O", zipfile_path]) elif "mega.nz" in url: m = Mega() m.download_url(url, './zips') else: subprocess.run(["wget", url, "-O", zipfile_path]) for filename in os.listdir("./zips"): if filename.endswith(".zip"): zipfile_path = os.path.join("./zips/",filename) shutil.unpack_archive(zipfile_path, "./unzips", 'zip') else: return "No zipfile found." for root, dirs, files in os.walk('./unzips'): for file in files: file_path = os.path.join(root, file) if file.endswith(".index"): os.mkdir(f'./logs/{model}') shutil.copy2(file_path,f'./logs/{model}') elif "G_" not in file and "D_" not in file and file.endswith(".pth"): shutil.copy(file_path,f'./weights/{model}.pth') shutil.rmtree("zips") shutil.rmtree("unzips") return "Success." except: return "There's been an error." def download_from_youtube(url): if url == '': pass filename = subprocess.getoutput(f'yt-dlp --print filename {url} --format m4a -o "./audios/%(title)s.%(ext)s"') subprocess.getoutput(f'yt-dlp {url} --format m4a -o "./audios/%(title)s.%(ext)s"') if os.path.exists(filename): return filename def find_vocals(root_directory, target_folder_name, file_name='vocals.wav'): for root, dirs, files in os.walk(root_directory): if target_folder_name in dirs: folder_path = os.path.join(root, target_folder_name) vocals_path = os.path.join(folder_path, file_name) if os.path.exists(vocals_path): return vocals_path return None def separate_vocals(audio_path): audio_name = audio_path[9:-4] if (os.path.exists(audio_path) and audio_name): demucs.separate.main(["--two-stems", "vocals", audio_path, "-o", './audios']) vocals_path = find_vocals('./audios', audio_name) if vocals_path: return vocals_path return None # aqui ainda não tá 100% def overlay_audios(sample_rate, np_array, accompaniment_path): if (not os.path.exists(accompaniment_path)): return (sample_rate, np_array) sound1 = audiosegment.from_numpy_array(np_array, sample_rate) sound2 = audiosegment.from_file(accompaniment_path) overlay = sound1.overlay(sound2, position=0) return (overlay.frame_rate, overlay.to_numpy_array()) def remove_separated_files(vocals_path): parent_dir = os.path.dirname(vocals_path) try: shutil.rmtree(parent_dir) print(f"Deleted {parent_dir} folder and its contents") except FileNotFoundError: print(f"{parent_dir} folder not found") except Exception as e: print(f"An error occurred: {str(e)}") def hide_output_text(): return {"visible": False, "__type__": "update", "value": ""} def show_selected_audio(input_audio_path): return input_audio_path css = """ .padding {padding-left: 15px; padding-top: 5px;} """ with gr.Blocks(theme = gr.themes.Base(), title="Vocais da Loirinha 👱🏻♀️", css=css) as app: gr.HTML("
2. Adicione um arquivo de áudio
", elem_classes="padding") yt_link_textbox = gr.Textbox(label="Insira um link para uma música no Youtube:") download_yt_button = gr.Button("Baixar áudio do vídeo") dropbox = gr.File(label="OU selecione um arquivo:") record_button = gr.Audio(source="microphone", label="OU grave o áudio:", type="filepath") with gr.Column(): with gr.Row(): audio_dropdown = gr.Dropdown( label="3. Selecione o áudio", value="", choices=audio_files, scale=1 ) refresh_button = gr.Button("Atualizar listas de vozes e áudios", variant="primary", scale=0) # Events download_yt_button.click(fn=download_from_youtube, inputs=[yt_link_textbox], outputs=[audio_dropdown]) dropbox.upload(fn=save_to_wav2, inputs=[dropbox], outputs=[audio_dropdown]) dropbox.upload(fn=change_choices2, inputs=[], outputs=[audio_dropdown]) record_button.change(fn=save_to_wav, inputs=[record_button], outputs=[audio_dropdown]) record_button.change(fn=change_choices2, inputs=[], outputs=[audio_dropdown]) refresh_button.click(fn=update_dropdowns, inputs=[], outputs=[model_dropdown, audio_dropdown]) selected_audio = gr.Audio(label="Áudio selecionado", interactive=False) audio_dropdown.select(show_selected_audio, inputs=[audio_dropdown], outputs=[selected_audio]) separate_checkbox = gr.Checkbox(label="Separar vocais e instrumental", info="Marque esta opção quando o áudio selecionado NÃO tiver a voz isolada. Os vocais serão extraídos para a conversão e depois reintegrados ao áudio final com os instrumentais. ⚠️ O tempo de conversão pode aumentar significamente com essa opção ativada.") convert_button = gr.Button("Gerar áudio", variant="primary") output_audio = gr.Audio( label="Áudio convertido (Clique nos três pontos para fazer o download)", type='filepath', interactive=False, ) output_audio_textbox = gr.Textbox(label="Resultado", interactive=False, visible=True, placeholder="Nenhum áudio gerado.") convert_button.click(hide_output_text, outputs=[output_audio_textbox]).then(vc_single, [audio_dropdown, separate_checkbox], [output_audio_textbox, output_audio]) with gr.TabItem("Adicione uma voz"): with gr.Column(): model_link_textbox = gr.Textbox(label="1. Insira o link para o modelo:", info="A URL inserida deve ser o link para o download de um arquivo zip que contém o arquivo .pth. Pode ser um link do Google Drive, Mega ou Hugging Face.") model_name_textbox = gr.Textbox(label="2. Escolha um nome para identificar o modelo:", info="Esse nome deve ser diferente do nome dos modelos (vozes) já existentes!") download_button = gr.Button("Baixar modelo") output_download_textbox = gr.Textbox(label="Resultado", interactive=False, placeholder="Nenhum modelo baixado.") download_button.click(fn=download_from_url, inputs=[model_link_textbox, model_name_textbox], outputs=[output_download_textbox]) with gr.Row(): gr.Markdown( """ Original RVC: https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI Mangio's RVC Fork: https://github.com/Mangio621/Mangio-RVC-Fork If you like the EasyGUI, help me keep it.❤️ https://paypal.me/lesantillan Made with ❤️ by [Alice Oliveira](https://github.com/aliceoq) | Hosted with ❤️ by [Mateus Elias](https://github.com/mateuseap) """ ) if config.iscolab or config.paperspace: # Share gradio link for colab and paperspace (FORK FEATURE) app.queue(concurrency_count=511, max_size=1022).launch(share=True, quiet=True) else: app.queue(concurrency_count=511, max_size=1022).launch(share=False, quiet=True) #endregion