import subprocess, torch, os, traceback, sys, warnings, shutil, numpy as np from mega import Mega os.environ["no_proxy"] = "localhost, 127.0.0.1, ::1" import threading from time import time from subprocess import Popen import datetime, requests now_dir = os.getcwd() sys.path.append(now_dir) tmp = os.path.join(now_dir, "TEMP") shutil.rmtree(tmp, ignore_errors=True) shutil.rmtree("%s/runtime/Lib/site-packages/infer_pack" % (now_dir), ignore_errors=True) os.makedirs(tmp, exist_ok=True) os.makedirs(os.path.join(now_dir, "logs"), exist_ok=True) os.makedirs(os.path.join(now_dir, "weights"), exist_ok=True) os.environ["TEMP"] = tmp warnings.filterwarnings("ignore") torch.manual_seed(114514) from i18n import I18nAuto from lib.infer_pack.models import ( SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono, SynthesizerTrnMs768NSFsid, SynthesizerTrnMs768NSFsid_nono, ) import soundfile as sf from fairseq import checkpoint_utils import gradio as gr import logging from vc_infer_pipeline import VC from config import Config from utils import load_audio, CSVutil import demucs.separate import audiosegment DoFormant = False Quefrency = 1.0 Timbre = 1.0 f0_method = 'rmvpe' f0_up_key = 0 crepe_hop_length = 120 filter_radius = 3 resample_sr = 1 rms_mix_rate = 0.21 protect = 0.33 index_rate = 0.66 sr_dict = { "32k": 32000, "40k": 40000, "48k": 48000, } # essa parte excluir dps if not os.path.isdir('csvdb/'): os.makedirs('csvdb') frmnt, stp = open("csvdb/formanting.csv", 'w'), open("csvdb/stop.csv", 'w') frmnt.close() stp.close() try: DoFormant, Quefrency, Timbre = CSVutil('csvdb/formanting.csv', 'r', 'formanting') DoFormant = ( lambda DoFormant: True if DoFormant.lower() == 'true' else (False if DoFormant.lower() == 'false' else DoFormant) )(DoFormant) except (ValueError, TypeError, IndexError): DoFormant, Quefrency, Timbre = False, 1.0, 1.0 CSVutil('csvdb/formanting.csv', 'w+', 'formanting', DoFormant, Quefrency, Timbre) def download_models(): # Download hubert base model if not present if not os.path.isfile('./hubert_base.pt'): response = requests.get('https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/hubert_base.pt') if response.status_code == 200: with open('./hubert_base.pt', 'wb') as f: f.write(response.content) print("Downloaded hubert base model file successfully. File saved to ./hubert_base.pt.") else: raise Exception("Failed to download hubert base model file. Status code: " + str(response.status_code) + ".") # Download rmvpe model if not present if not os.path.isfile('./rmvpe.pt'): response = requests.get('https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/rmvpe.pt') if response.status_code == 200: with open('./rmvpe.pt', 'wb') as f: f.write(response.content) print("Downloaded rmvpe model file successfully. File saved to ./rmvpe.pt.") else: raise Exception("Failed to download rmvpe model file. Status code: " + str(response.status_code) + ".") download_models() # Check if we're in a Google Colab environment if os.path.exists('/content/'): print("\n-------------------------------\nRVC v2 Easy GUI (Colab Edition)\n-------------------------------\n") print("-------------------------------") # Check if the file exists at the specified path if os.path.exists('/content/Mangio-RVC-Fork/hubert_base.pt'): # If the file exists, print a statement saying so print("File /content/Mangio-RVC-Fork/hubert_base.pt already exists. No need to download.") else: # If the file doesn't exist, print a statement saying it's downloading print("File /content/Mangio-RVC-Fork/hubert_base.pt does not exist. Starting download.") # Make a request to the URL response = requests.get('https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/hubert_base.pt') # Ensure the request was successful if response.status_code == 200: # If the response was a success, save the content to the specified file path with open('/content/Mangio-RVC-Fork/hubert_base.pt', 'wb') as f: f.write(response.content) print("Download complete. File saved to /content/Mangio-RVC-Fork/hubert_base.pt.") else: # If the response was a failure, print an error message print("Failed to download file. Status code: " + str(response.status_code) + ".") else: print("\n-------------------------------\nRVC v2 Easy GUI (Local Edition)\n-------------------------------\n") print("-------------------------------\nNot running on Google Colab, skipping download.") i18n = I18nAuto() ngpu = torch.cuda.device_count() gpu_infos = [] mem = [] if (not torch.cuda.is_available()) or ngpu == 0: if_gpu_ok = False else: if_gpu_ok = False for i in range(ngpu): gpu_name = torch.cuda.get_device_name(i) if ( "10" in gpu_name or "16" in gpu_name or "20" in gpu_name or "30" in gpu_name or "40" in gpu_name or "A2" in gpu_name.upper() or "A3" in gpu_name.upper() or "A4" in gpu_name.upper() or "P4" in gpu_name.upper() or "A50" in gpu_name.upper() or "A60" in gpu_name.upper() or "70" in gpu_name or "80" in gpu_name or "90" in gpu_name or "M4" in gpu_name.upper() or "T4" in gpu_name.upper() or "TITAN" in gpu_name.upper() ): # A10#A100#V100#A40#P40#M40#K80#A4500 if_gpu_ok = True # 至少有一张能用的N卡 gpu_infos.append("%s\t%s" % (i, gpu_name)) mem.append( int( torch.cuda.get_device_properties(i).total_memory / 1024 / 1024 / 1024 + 0.4 ) ) if if_gpu_ok == True and len(gpu_infos) > 0: gpu_info = "\n".join(gpu_infos) default_batch_size = min(mem) // 2 else: gpu_info = i18n("很遗憾您这没有能用的显卡来支持您训练") default_batch_size = 1 gpus = "-".join([i[0] for i in gpu_infos]) config = Config() logging.getLogger("numba").setLevel(logging.WARNING) hubert_model = None def load_hubert(): global hubert_model models, _, _ = checkpoint_utils.load_model_ensemble_and_task( ["hubert_base.pt"], suffix="", ) hubert_model = models[0] hubert_model = hubert_model.to(config.device) if config.is_half: hubert_model = hubert_model.half() else: hubert_model = hubert_model.float() hubert_model.eval() weight_root = "weights" index_root = "logs" names = [] for name in os.listdir(weight_root): if name.endswith(".pth"): names.append(name) index_paths = [] for root, dirs, files in os.walk(index_root, topdown=False): for name in files: if name.endswith(".index") and "trained" not in name: index_paths.append("%s/%s" % (root, name)) def vc_single( input_audio, separate_vocals_bool, progress = gr.Progress() ): progress(0, desc="Preparando áudio...") overlay_audios_bool = False input_audio_path = input_audio global tgt_sr, net_g, vc, hubert_model, version if input_audio_path is None: return "You need to upload an audio", None try: t1 = 0 t2 = 0 if (separate_vocals_bool): t1 = time() progress(0.1, desc="Separando vocais...") path_to_separated_vocals = separate_vocals(input_audio_path) if (path_to_separated_vocals): input_audio_path = path_to_separated_vocals overlay_audios_bool = True t2 = time() progress(0.2, desc="Carregando áudio...") audio = load_audio(input_audio_path, 16000, DoFormant, Quefrency, Timbre) audio_max = np.abs(audio).max() / 0.95 if audio_max > 1: audio /= audio_max times = [0, 0, 0, t2 - t1, 0] if hubert_model == None: load_hubert() if_f0 = cpt.get("f0", 1) file_index = get_index() file_index = ( ( file_index.strip(" ") .strip('"') .strip("\n") .strip('"') .strip(" ") .replace("trained", "added") ) ) progress(0.3, desc="Gerando áudio...") audio_opt = vc.pipeline( hubert_model, net_g, 0, audio, input_audio_path, times, f0_up_key, f0_method, file_index, index_rate, if_f0, filter_radius, tgt_sr, resample_sr, rms_mix_rate, version, protect, crepe_hop_length, progress, f0_file=None, ) progress(0.8, desc="Áudio convertido...") if resample_sr >= 16000 and tgt_sr != resample_sr: tgt_sr = resample_sr if (overlay_audios_bool): t1 = time() progress(0.9, desc="Juntando vocal e instrumental...") (tgt_sr, audio_opt) = overlay_audios(tgt_sr, audio_opt, input_audio_path.replace("vocals", "no_vocals")) remove_separated_files(input_audio_path) t2 = time() times[4] = t2 - t1 return {"visible": True, "__type__": "update", "value": "Áudio convertido com sucesso!\nTempo: %1fs" % ( sum(times), )}, (tgt_sr, audio_opt) except: info = traceback.format_exc() print(info) return info, (None, None) def get_vc(sid): global n_spk, tgt_sr, net_g, vc, cpt, version if sid == "" or sid == []: global hubert_model if hubert_model != None: print("clean_empty_cache") del net_g, n_spk, vc, hubert_model, tgt_sr # ,cpt hubert_model = net_g = n_spk = vc = hubert_model = tgt_sr = None if torch.cuda.is_available(): torch.cuda.empty_cache() if_f0 = cpt.get("f0", 1) version = cpt.get("version", "v1") if version == "v1": if if_f0 == 1: net_g = SynthesizerTrnMs256NSFsid( *cpt["config"], is_half=config.is_half ) else: net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) elif version == "v2": if if_f0 == 1: net_g = SynthesizerTrnMs768NSFsid( *cpt["config"], is_half=config.is_half ) else: net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"]) del net_g, cpt if torch.cuda.is_available(): torch.cuda.empty_cache() cpt = None return {"visible": False, "__type__": "update"} person = "%s/%s" % (weight_root, sid) print("loading %s" % person) cpt = torch.load(person, map_location="cpu") tgt_sr = cpt["config"][-1] cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk if_f0 = cpt.get("f0", 1) version = cpt.get("version", "v1") if version == "v1": if if_f0 == 1: net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half) else: net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) elif version == "v2": if if_f0 == 1: net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half) else: net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"]) del net_g.enc_q print(net_g.load_state_dict(cpt["weight"], strict=False)) net_g.eval().to(config.device) if config.is_half: net_g = net_g.half() else: net_g = net_g.float() vc = VC(tgt_sr, config) n_spk = cpt["config"][-3] def change_choices(): names = [] for name in os.listdir(weight_root): if name.endswith(".pth"): names.append(name) index_paths = [] for root, dirs, files in os.walk(index_root, topdown=False): for name in files: if name.endswith(".index") and "trained" not in name: index_paths.append("%s/%s" % (root, name)) return {"choices": sorted(names), "__type__": "update"} def update_dropdowns(): return [change_choices(), change_choices2()] #region RVC WebUI App def change_choices2(): audio_files=[] for filename in os.listdir("./audios"): if filename.endswith(('.wav','.mp3','.ogg','.flac','.m4a','.aac','.mp4')): audio_files.append(os.path.join('./audios',filename).replace('\\', '/')) return {"choices": sorted(audio_files), "__type__": "update"} audio_files=[] for filename in os.listdir("./audios"): if filename.endswith(('.wav','.mp3','.ogg','.flac','.m4a','.aac','.mp4')): audio_files.append(os.path.join('./audios',filename).replace('\\', '/')) def get_index(): if check_for_name() != '': chosen_model=sorted(names)[0].split(".")[0] logs_path="./logs/"+chosen_model if os.path.exists(logs_path): for file in os.listdir(logs_path): if file.endswith(".index"): return os.path.join(logs_path, file) return '' else: return '' return '' def save_to_wav(record_button): if record_button is None: pass else: path_to_file=record_button new_name = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")+'.wav' new_path='./audios/'+new_name shutil.move(path_to_file,new_path) return new_path def save_to_wav2(dropbox): file_path=dropbox.name shutil.move(file_path,'./audios') return os.path.join('./audios',os.path.basename(file_path)) def check_for_name(): if len(names) > 0: return sorted(names)[0] else: return '' def download_from_url(url, model): if url == '': return "URL cannot be left empty." if model =='': return "You need to name your model. For example: My-Model" url = url.strip() zip_dirs = ["zips", "unzips"] for directory in zip_dirs: if os.path.exists(directory): shutil.rmtree(directory) os.makedirs("zips", exist_ok=True) os.makedirs("unzips", exist_ok=True) zipfile = model + '.zip' zipfile_path = './zips/' + zipfile try: if "drive.google.com" in url: subprocess.run(["gdown", url, "--fuzzy", "-O", zipfile_path]) elif "mega.nz" in url: m = Mega() m.download_url(url, './zips') else: subprocess.run(["wget", url, "-O", zipfile_path]) for filename in os.listdir("./zips"): if filename.endswith(".zip"): zipfile_path = os.path.join("./zips/",filename) shutil.unpack_archive(zipfile_path, "./unzips", 'zip') else: return "No zipfile found." for root, dirs, files in os.walk('./unzips'): for file in files: file_path = os.path.join(root, file) if file.endswith(".index"): os.mkdir(f'./logs/{model}') shutil.copy2(file_path,f'./logs/{model}') elif "G_" not in file and "D_" not in file and file.endswith(".pth"): shutil.copy(file_path,f'./weights/{model}.pth') shutil.rmtree("zips") shutil.rmtree("unzips") return "Success." except: return "There's been an error." def download_from_youtube(url): if url == '': pass filename = subprocess.getoutput(f'yt-dlp --print filename {url} --format m4a -o "./audios/%(title)s.%(ext)s"') subprocess.getoutput(f'yt-dlp {url} --format m4a -o "./audios/%(title)s.%(ext)s"') if os.path.exists(filename): return filename def find_vocals(root_directory, target_folder_name, file_name='vocals.wav'): for root, dirs, files in os.walk(root_directory): if target_folder_name in dirs: folder_path = os.path.join(root, target_folder_name) vocals_path = os.path.join(folder_path, file_name) if os.path.exists(vocals_path): return vocals_path return None def separate_vocals(audio_path): audio_name = audio_path[9:-4] if (os.path.exists(audio_path) and audio_name): demucs.separate.main(["--two-stems", "vocals", audio_path, "-o", './audios']) vocals_path = find_vocals('./audios', audio_name) if vocals_path: return vocals_path return None # aqui ainda não tá 100% def overlay_audios(sample_rate, np_array, accompaniment_path): if (not os.path.exists(accompaniment_path)): return (sample_rate, np_array) sound1 = audiosegment.from_numpy_array(np_array, sample_rate) sound2 = audiosegment.from_file(accompaniment_path) overlay = sound1.overlay(sound2, position=0) return (overlay.frame_rate, overlay.to_numpy_array()) def remove_separated_files(vocals_path): parent_dir = os.path.dirname(vocals_path) try: shutil.rmtree(parent_dir) print(f"Deleted {parent_dir} folder and its contents") except FileNotFoundError: print(f"{parent_dir} folder not found") except Exception as e: print(f"An error occurred: {str(e)}") def hide_output_text(): return {"visible": False, "__type__": "update", "value": ""} def show_selected_audio(input_audio_path): return input_audio_path css = """ .padding {padding-left: 15px; padding-top: 5px;} """ with gr.Blocks(theme = gr.themes.Base(), title="Vocais da Loirinha 👱🏻‍♀️", css=css) as app: gr.HTML("

Vocais da Loirinha 👱🏻‍♀️

") gr.HTML("

Como usar?

") gr.Markdown("""Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vivamus et volutpat eros. Nunc id magna vel ligula blandit ullamcorper. Proin commodo tincidunt gravida. Morbi posuere, lorem eu ornare auctor, dolor est volutpat eros, sed aliquet justo mi eu ligula. Maecenas convallis risus metus, at convallis ex gravida in. Suspendisse varius libero nec tellus placerat vulputate. Quisque ornare enim sed tristique ultrices.""") gr.HTML("

Comece aqui!

") with gr.Tabs(): with gr.TabItem("Inferência"): with gr.Row().style(equal_height=True): with gr.Column(): with gr.Row(): model_dropdown = gr.Dropdown(label="1. Selecione a voz:", choices=sorted(names), value=check_for_name()) if check_for_name() != '': get_vc(sorted(names)[0]) model_dropdown.change( fn=get_vc, inputs=[model_dropdown], outputs=[], ) gr.HTML("

2. Adicione um arquivo de áudio

", elem_classes="padding") yt_link_textbox = gr.Textbox(label="Insira um link para uma música no Youtube:") download_yt_button = gr.Button("Baixar áudio do vídeo") dropbox = gr.File(label="OU selecione um arquivo:") record_button = gr.Audio(source="microphone", label="OU grave o áudio:", type="filepath") with gr.Column(): with gr.Row(): audio_dropdown = gr.Dropdown( label="3. Selecione o áudio", value="", choices=audio_files, scale=1 ) refresh_button = gr.Button("Atualizar listas de vozes e áudios", variant="primary", scale=0) # Events download_yt_button.click(fn=download_from_youtube, inputs=[yt_link_textbox], outputs=[audio_dropdown]) dropbox.upload(fn=save_to_wav2, inputs=[dropbox], outputs=[audio_dropdown]) dropbox.upload(fn=change_choices2, inputs=[], outputs=[audio_dropdown]) record_button.change(fn=save_to_wav, inputs=[record_button], outputs=[audio_dropdown]) record_button.change(fn=change_choices2, inputs=[], outputs=[audio_dropdown]) refresh_button.click(fn=update_dropdowns, inputs=[], outputs=[model_dropdown, audio_dropdown]) selected_audio = gr.Audio(label="Áudio selecionado", interactive=False) audio_dropdown.select(show_selected_audio, inputs=[audio_dropdown], outputs=[selected_audio]) separate_checkbox = gr.Checkbox(label="Separar vocais e instrumental", info="Marque esta opção quando o áudio selecionado NÃO tiver a voz isolada. Os vocais serão extraídos para a conversão e depois reintegrados ao áudio final com os instrumentais. ⚠️ O tempo de conversão pode aumentar significamente com essa opção ativada.") convert_button = gr.Button("Gerar áudio", variant="primary") output_audio = gr.Audio( label="Áudio convertido (Clique nos três pontos para fazer o download)", type='filepath', interactive=False, ) output_audio_textbox = gr.Textbox(label="Resultado", interactive=False, visible=True, placeholder="Nenhum áudio gerado.") convert_button.click(hide_output_text, outputs=[output_audio_textbox]).then(vc_single, [audio_dropdown, separate_checkbox], [output_audio_textbox, output_audio]) with gr.TabItem("Adicione uma voz"): with gr.Column(): model_link_textbox = gr.Textbox(label="1. Insira o link para o modelo:", info="A URL inserida deve ser o link para o download de um arquivo zip que contém o arquivo .pth. Pode ser um link do Google Drive, Mega ou Hugging Face.") model_name_textbox = gr.Textbox(label="2. Escolha um nome para identificar o modelo:", info="Esse nome deve ser diferente do nome dos modelos (vozes) já existentes!") download_button = gr.Button("Baixar modelo") output_download_textbox = gr.Textbox(label="Resultado", interactive=False, placeholder="Nenhum modelo baixado.") download_button.click(fn=download_from_url, inputs=[model_link_textbox, model_name_textbox], outputs=[output_download_textbox]) with gr.Row(): gr.Markdown( """ Original RVC: https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI Mangio's RVC Fork: https://github.com/Mangio621/Mangio-RVC-Fork If you like the EasyGUI, help me keep it.❤️ https://paypal.me/lesantillan Made with ❤️ by [Alice Oliveira](https://github.com/aliceoq) | Hosted with ❤️ by [Mateus Elias](https://github.com/mateuseap) """ ) if config.iscolab or config.paperspace: # Share gradio link for colab and paperspace (FORK FEATURE) app.queue(concurrency_count=511, max_size=1022).launch(share=True, quiet=True) else: app.queue(concurrency_count=511, max_size=1022).launch(share=False, quiet=True) #endregion