Spaces:
Running
Running
File size: 12,270 Bytes
0cc999a 7bab2f2 0cc999a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
from __future__ import annotations
import json
import logging
import traceback
import base64
import colorama
import requests
from io import BytesIO
import uuid
import requests
from PIL import Image
from .. import shared
from ..config import retrieve_proxy, sensitive_id, usage_limit
from ..index_func import *
from ..presets import *
from ..utils import *
from .base_model import BaseLLMModel
class OpenAIVisionClient(BaseLLMModel):
def __init__(
self,
model_name,
api_key,
system_prompt=INITIAL_SYSTEM_PROMPT,
temperature=1.0,
top_p=1.0,
user_name=""
) -> None:
super().__init__(
model_name=model_name,
temperature=temperature,
top_p=top_p,
system_prompt=system_prompt,
user=user_name
)
self.api_key = api_key
self.need_api_key = True
self.max_generation_token = 4096
self.images = []
self._refresh_header()
def get_answer_stream_iter(self):
response = self._get_response(stream=True)
if response is not None:
iter = self._decode_chat_response(response)
partial_text = ""
for i in iter:
partial_text += i
yield partial_text
else:
yield STANDARD_ERROR_MSG + GENERAL_ERROR_MSG
def get_answer_at_once(self):
response = self._get_response()
response = json.loads(response.text)
content = response["choices"][0]["message"]["content"]
total_token_count = response["usage"]["total_tokens"]
return content, total_token_count
def try_read_image(self, filepath):
def is_image_file(filepath):
# 判断文件是否为图片
valid_image_extensions = [
".jpg", ".jpeg", ".png", ".bmp", ".gif", ".tiff"]
file_extension = os.path.splitext(filepath)[1].lower()
return file_extension in valid_image_extensions
def image_to_base64(image_path):
# 打开并加载图片
img = Image.open(image_path)
# 获取图片的宽度和高度
width, height = img.size
# 计算压缩比例,以确保最长边小于4096像素
max_dimension = 2048
scale_ratio = min(max_dimension / width, max_dimension / height)
if scale_ratio < 1:
# 按压缩比例调整图片大小
new_width = int(width * scale_ratio)
new_height = int(height * scale_ratio)
img = img.resize((new_width, new_height), Image.LANCZOS)
# 将图片转换为jpg格式的二进制数据
buffer = BytesIO()
if img.mode == "RGBA":
img = img.convert("RGB")
img.save(buffer, format='JPEG')
binary_image = buffer.getvalue()
# 对二进制数据进行Base64编码
base64_image = base64.b64encode(binary_image).decode('utf-8')
return base64_image
if is_image_file(filepath):
logging.info(f"读取图片文件: {filepath}")
base64_image = image_to_base64(filepath)
self.images.append({
"path": filepath,
"base64": base64_image,
})
def handle_file_upload(self, files, chatbot, language):
"""if the model accepts multi modal input, implement this function"""
if files:
for file in files:
if file.name:
self.try_read_image(file.name)
if self.images is not None:
chatbot = chatbot + [([image["path"] for image in self.images], None)]
return None, chatbot, None
def prepare_inputs(self, real_inputs, use_websearch, files, reply_language, chatbot):
fake_inputs = real_inputs
display_append = ""
limited_context = False
return limited_context, fake_inputs, display_append, real_inputs, chatbot
def count_token(self, user_input):
input_token_count = count_token(construct_user(user_input))
if self.system_prompt is not None and len(self.all_token_counts) == 0:
system_prompt_token_count = count_token(
construct_system(self.system_prompt)
)
return input_token_count + system_prompt_token_count
return input_token_count
def billing_info(self):
try:
curr_time = datetime.datetime.now()
last_day_of_month = get_last_day_of_month(
curr_time).strftime("%Y-%m-%d")
first_day_of_month = curr_time.replace(day=1).strftime("%Y-%m-%d")
usage_url = f"{shared.state.usage_api_url}?start_date={first_day_of_month}&end_date={last_day_of_month}"
try:
usage_data = self._get_billing_data(usage_url)
except Exception as e:
# logging.error(f"获取API使用情况失败: " + str(e))
if "Invalid authorization header" in str(e):
return i18n("**获取API使用情况失败**,需在填写`config.json`中正确填写sensitive_id")
elif "Incorrect API key provided: sess" in str(e):
return i18n("**获取API使用情况失败**,sensitive_id错误或已过期")
return i18n("**获取API使用情况失败**")
# rounded_usage = "{:.5f}".format(usage_data["total_usage"] / 100)
rounded_usage = round(usage_data["total_usage"] / 100, 5)
usage_percent = round(usage_data["total_usage"] / usage_limit, 2)
from ..webui import get_html
# return i18n("**本月使用金额** ") + f"\u3000 ${rounded_usage}"
return get_html("billing_info.html").format(
label = i18n("本月使用金额"),
usage_percent = usage_percent,
rounded_usage = rounded_usage,
usage_limit = usage_limit
)
except requests.exceptions.ConnectTimeout:
status_text = (
STANDARD_ERROR_MSG + CONNECTION_TIMEOUT_MSG + ERROR_RETRIEVE_MSG
)
return status_text
except requests.exceptions.ReadTimeout:
status_text = STANDARD_ERROR_MSG + READ_TIMEOUT_MSG + ERROR_RETRIEVE_MSG
return status_text
except Exception as e:
import traceback
traceback.print_exc()
logging.error(i18n("获取API使用情况失败:") + str(e))
return STANDARD_ERROR_MSG + ERROR_RETRIEVE_MSG
def set_token_upper_limit(self, new_upper_limit):
pass
@shared.state.switching_api_key # 在不开启多账号模式的时候,这个装饰器不会起作用
def _get_response(self, stream=False):
openai_api_key = self.api_key
system_prompt = self.system_prompt
history = self.history
if self.images:
self.history[-1]["content"] = [
{"type": "text", "text": self.history[-1]["content"]},
*[{"type": "image_url", "image_url": "data:image/jpeg;base64,"+image["base64"]} for image in self.images]
]
self.images = []
logging.debug(colorama.Fore.YELLOW +
f"{history}" + colorama.Fore.RESET)
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {openai_api_key}",
}
if system_prompt is not None:
history = [construct_system(system_prompt), *history]
payload = {
"model": self.model_name,
"messages": history,
"temperature": self.temperature,
"top_p": self.top_p,
"n": self.n_choices,
"stream": stream,
"presence_penalty": self.presence_penalty,
"frequency_penalty": self.frequency_penalty,
}
if self.max_generation_token is not None:
payload["max_tokens"] = self.max_generation_token
if self.stop_sequence is not None:
payload["stop"] = self.stop_sequence
if self.logit_bias is not None:
payload["logit_bias"] = self.logit_bias
if self.user_identifier:
payload["user"] = self.user_identifier
if stream:
timeout = TIMEOUT_STREAMING
else:
timeout = TIMEOUT_ALL
# 如果有自定义的api-host,使用自定义host发送请求,否则使用默认设置发送请求
if shared.state.chat_completion_url != CHAT_COMPLETION_URL:
logging.debug(f"使用自定义API URL: {shared.state.chat_completion_url}")
with retrieve_proxy():
try:
response = requests.post(
shared.state.chat_completion_url,
headers=headers,
json=payload,
stream=stream,
timeout=timeout,
)
except:
traceback.print_exc()
return None
return response
def _refresh_header(self):
self.headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {sensitive_id}",
}
def _get_billing_data(self, billing_url):
with retrieve_proxy():
response = requests.get(
billing_url,
headers=self.headers,
timeout=TIMEOUT_ALL,
)
if response.status_code == 200:
data = response.json()
return data
else:
raise Exception(
f"API request failed with status code {response.status_code}: {response.text}"
)
def _decode_chat_response(self, response):
error_msg = ""
for chunk in response.iter_lines():
if chunk:
chunk = chunk.decode()
chunk_length = len(chunk)
try:
chunk = json.loads(chunk[6:])
except:
print(i18n("JSON解析错误,收到的内容: ") + f"{chunk}")
error_msg += chunk
continue
try:
if chunk_length > 6 and "delta" in chunk["choices"][0]:
if "finish_details" in chunk["choices"][0]:
finish_reason = chunk["choices"][0]["finish_details"]
else:
finish_reason = chunk["finish_details"]
if finish_reason == "stop":
break
try:
yield chunk["choices"][0]["delta"]["content"]
except Exception as e:
# logging.error(f"Error: {e}")
continue
except:
traceback.print_exc()
print(f"ERROR: {chunk}")
continue
if error_msg and not error_msg=="data: [DONE]":
raise Exception(error_msg)
def set_key(self, new_access_key):
ret = super().set_key(new_access_key)
self._refresh_header()
return ret
def _single_query_at_once(self, history, temperature=1.0):
timeout = TIMEOUT_ALL
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {self.api_key}",
"temperature": f"{temperature}",
}
payload = {
"model": self.model_name,
"messages": history,
}
# 如果有自定义的api-host,使用自定义host发送请求,否则使用默认设置发送请求
if shared.state.chat_completion_url != CHAT_COMPLETION_URL:
logging.debug(f"使用自定义API URL: {shared.state.chat_completion_url}")
with retrieve_proxy():
response = requests.post(
shared.state.chat_completion_url,
headers=headers,
json=payload,
stream=False,
timeout=timeout,
)
return response
|