alimotahharynia's picture
Update app.py
8af0501 verified
raw
history blame
10.4 kB
import os
import json
import torch
import logging
import tempfile
import gradio as gr
from gradio.themes import Soft
from datasets import load_dataset
from transformers import AutoTokenizer, GPT2LMHeadModel
# Global logging setup
def setup_logging(output_file="app.log"):
log_filename = os.path.splitext(output_file)[0] + ".log"
logging.getLogger().handlers.clear()
file_handler = logging.FileHandler(log_filename)
file_handler.setLevel(logging.INFO)
file_handler.setFormatter(logging.Formatter("%(asctime)s - %(levelname)s - %(message)s"))
stream_handler = logging.StreamHandler()
stream_handler.setLevel(logging.INFO)
stream_handler.setFormatter(logging.Formatter("%(asctime)s - %(levelname)s - %(message)s"))
logger = logging.getLogger()
logger.setLevel(logging.INFO)
logger.addHandler(file_handler)
logger.addHandler(stream_handler)
# Load model and tokenizer
def load_model_and_tokenizer(model_name):
logging.info(f"Loading model and tokenizer: {model_name}")
try:
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = GPT2LMHeadModel.from_pretrained(model_name)
if torch.cuda.is_available():
logging.info("Moving model to CUDA device.")
model = model.to("cuda")
return model, tokenizer
except Exception as e:
logging.error(f"Error loading model and tokenizer: {e}")
raise RuntimeError(f"Failed to load model and tokenizer: {e}")
# Load the dataset
def load_uniprot_dataset(dataset_name, dataset_key):
try:
dataset = load_dataset(dataset_name, dataset_key)
uniprot_to_sequence = {row["UniProt_id"]: row["Sequence"] for row in dataset["uniprot_seq"]}
logging.info("Dataset loaded and processed successfully.")
return uniprot_to_sequence
except Exception as e:
logging.error(f"Error loading dataset: {e}")
raise RuntimeError(f"Failed to load dataset: {e}")
def save_smiles_to_file(results):
file_path = os.path.join(tempfile.gettempdir(), "generated_smiles.json")
with open(file_path, "w") as f:
json.dump(results, f, indent=4)
return file_path
# SMILES Generator
class SMILESGenerator:
def __init__(self, model, tokenizer, uniprot_to_sequence):
self.model = model
self.tokenizer = tokenizer
self.uniprot_to_sequence = uniprot_to_sequence
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.model.to(self.device)
self.generation_kwargs = {
"do_sample": True,
"top_k": 9,
"max_length": 1024,
"top_p": 0.9,
"num_return_sequences": 10,
"bos_token_id": tokenizer.bos_token_id,
"eos_token_id": tokenizer.eos_token_id,
"pad_token_id": tokenizer.pad_token_id
}
def generate_smiles(self, sequence, num_generated, progress_callback=None):
generated_smiles_set = set()
prompt = f"<|startoftext|><P>{sequence}<L>"
encoded_prompt = self.tokenizer(prompt, return_tensors="pt")["input_ids"].to(self.device)
logging.info(f"Generating SMILES for sequence: {sequence[:10]}...")
retries = 0
while len(generated_smiles_set) < num_generated:
if retries >= 30:
logging.warning("Max retries reached. Returning what has been generated so far.")
break
sample_outputs = self.model.generate(encoded_prompt, **self.generation_kwargs)
for i, sample_output in enumerate(sample_outputs):
output_decode = self.tokenizer.decode(sample_output, skip_special_tokens=False)
try:
generated_smiles = output_decode.split("<L>")[1].split("<|endoftext|>")[0]
if generated_smiles not in generated_smiles_set:
generated_smiles_set.add(generated_smiles)
except (IndexError, AttributeError) as e:
logging.warning(f"Failed to parse small molecule due to error: {str(e)}. Skipping.")
if progress_callback:
progress_callback((retries + 1) / 30)
retries += 1
logging.info(f"Small molecules generation completed. Generated {len(generated_smiles_set)} Small molecules.")
return list(generated_smiles_set)
# Gradio interface
def generate_smiles_gradio(sequence_input=None, uniprot_id=None, num_generated=10):
results = {}
uniprot_counter = 0 # Counter for sequences without UniProt IDs
# Process sequence inputs and include UniProt ID if found
if sequence_input:
sequences = [seq.strip() for seq in sequence_input.split(",") if seq.strip()]
for seq in sequences:
try:
# Find the corresponding UniProt ID for the sequence
uniprot_id_for_seq = [uid for uid, s in uniprot_to_sequence.items() if s == seq]
if uniprot_id_for_seq:
uniprot_id_for_seq = uniprot_id_for_seq[0]
else:
# Assign a number as the key for sequences without UniProt IDs
uniprot_id_for_seq = str(uniprot_counter)
uniprot_counter += 1
# Generate SMILES for the sequence
smiles = generator.generate_smiles(seq, num_generated)
# UniProt ID or the numeric key as the key
results[uniprot_id_for_seq] = {
"sequence": seq,
"smiles": smiles
}
except Exception as e:
results[str(uniprot_counter)] = {
"sequence": seq,
"error": f"Error generating small molecules: {str(e)}"
}
uniprot_counter += 1
# Process UniProt ID inputs and include sequence if found
if uniprot_id:
uniprot_ids = [uid.strip() for uid in uniprot_id.split(",") if uid.strip()]
for uid in uniprot_ids:
sequence = uniprot_to_sequence.get(uid, "N/A")
try:
# Generate SMILES for the sequence found
if sequence != "N/A":
smiles = generator.generate_smiles(sequence, num_generated)
results[uid] = {
"sequence": sequence,
"smiles": smiles
}
else:
results[uid] = {
"sequence": "N/A",
"error": f"UniProt ID {uid} not found in the dataset."
}
except Exception as e:
results[uid] = {
"sequence": "N/A",
"error": f"Error generating small molecules: {str(e)}"
}
# Check if no results were generated
if not results:
return {"error": "No small molecules generated. Please try again with different inputs."}
# Save results to a file
file_path = save_smiles_to_file(results)
# Return both results (JSON) and the file path
return results, file_path
# Main initialization and Gradio setup
if __name__ == "__main__":
setup_logging()
model_name = "alimotahharynia/DrugGen"
dataset_name = "alimotahharynia/approved_drug_target"
dataset_key = "uniprot_sequence"
model, tokenizer = load_model_and_tokenizer(model_name)
uniprot_to_sequence = load_uniprot_dataset(dataset_name, dataset_key)
generator = SMILESGenerator(model, tokenizer, uniprot_to_sequence)
# Apply Gradio theme
theme = Soft(primary_hue="indigo", secondary_hue="teal")
css = """
#app-title {
font-size: 24px;
text-align: center;
margin-bottom: 20px;
}
#description {
font-size: 18px;
text-align: center;
margin-bottom: 20px;
}
#file-output {
height: 90px;
}
#generate-button {
height: 40px;
color: #333333 !important;
}
"""
with gr.Blocks(theme=theme, css=css) as iface:
gr.Markdown("## DrugGen", elem_id="app-title")
gr.Markdown(
"Generate **drug-like small molecules structures** from protein sequences or UniProt IDs. "
"Input data, specify parameters, and download the results.",
elem_id="description"
)
with gr.Row():
sequence_input = gr.Textbox(
label="Protein Sequences",
placeholder="Enter sequences separated by commas (e.g., MGAASGRRGP..., MGETLGDSPI..., ...)",
lines=3,
)
uniprot_id_input = gr.Textbox(
label="UniProt IDs",
placeholder="Enter UniProt IDs separated by commas (e.g., P12821, P37231, ...)",
lines=3,
)
num_generated_slider = gr.Slider(
minimum=1,
maximum=100,
step=1,
value=10,
label="Number of Unique Small Molecules to Generate",
)
output = gr.JSON(label="Generated Small Molecules")
file_output = gr.File(
label="Download Results as JSON",
elem_id=["file-output"]
)
generate_button = gr.Button("Generate Small Molecule", elem_id="generate-button")
generate_button.click(
generate_smiles_gradio,
inputs=[sequence_input, uniprot_id_input, num_generated_slider],
outputs=[output, file_output]
)
gr.Markdown("""
### How to Cite:
If you use this tool in your research, please cite the following work:
```bibtex
@misc{sheikholeslami2024druggenadvancingdrugdiscovery,
title={DrugGen: Advancing Drug Discovery with Large Language Models and Reinforcement Learning Feedback},
author={Mahsa Sheikholeslami and Navid Mazrouei and Yousof Gheisari and Afshin Fasihi and Matin Irajpour and Ali Motahharynia},
year={2024},
eprint={2411.14157},
archivePrefix={arXiv},
primaryClass={q-bio.QM},
url={https://arxiv.org/abs/2411.14157},
}
```
This will help us maintain the tool and support future development!
""")
iface.launch(allowed_paths=["/tmp"])