|
""" Vision Transformer (ViT) in PyTorch |
|
Hacked together by / Copyright 2020 Ross Wightman |
|
""" |
|
from functools import partial |
|
|
|
import torch |
|
import torch.nn as nn |
|
from baselines.ViT.helpers import load_pretrained |
|
from baselines.ViT.layer_helpers import to_2tuple |
|
from baselines.ViT.weight_init import trunc_normal_ |
|
from einops import rearrange |
|
|
|
|
|
def _cfg(url="", **kwargs): |
|
return { |
|
"url": url, |
|
"num_classes": 1000, |
|
"input_size": (3, 224, 224), |
|
"pool_size": None, |
|
"crop_pct": 0.9, |
|
"interpolation": "bicubic", |
|
"first_conv": "patch_embed.proj", |
|
"classifier": "head", |
|
**kwargs, |
|
} |
|
|
|
|
|
default_cfgs = { |
|
|
|
"vit_small_patch16_224": _cfg( |
|
url="https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/vit_small_p16_224-15ec54c9.pth", |
|
), |
|
"vit_base_patch16_224": _cfg( |
|
url="https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth", |
|
mean=(0.5, 0.5, 0.5), |
|
std=(0.5, 0.5, 0.5), |
|
), |
|
"vit_large_patch16_224": _cfg( |
|
url="https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p16_224-4ee7a4dc.pth", |
|
mean=(0.5, 0.5, 0.5), |
|
std=(0.5, 0.5, 0.5), |
|
), |
|
} |
|
|
|
|
|
class Mlp(nn.Module): |
|
def __init__( |
|
self, |
|
in_features, |
|
hidden_features=None, |
|
out_features=None, |
|
act_layer=nn.GELU, |
|
drop=0.0, |
|
): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
self.act = act_layer() |
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
self.drop = nn.Dropout(drop) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.drop(x) |
|
x = self.fc2(x) |
|
x = self.drop(x) |
|
return x |
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0.0, proj_drop=0.0): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
|
|
self.scale = head_dim**-0.5 |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
self.attn_gradients = None |
|
self.attention_map = None |
|
|
|
def save_attn_gradients(self, attn_gradients): |
|
self.attn_gradients = attn_gradients |
|
|
|
def get_attn_gradients(self): |
|
return self.attn_gradients |
|
|
|
def save_attention_map(self, attention_map): |
|
self.attention_map = attention_map |
|
|
|
def get_attention_map(self): |
|
return self.attention_map |
|
|
|
def forward(self, x, register_hook=False): |
|
b, n, _, h = *x.shape, self.num_heads |
|
|
|
|
|
|
|
|
|
qkv = self.qkv(x) |
|
q, k, v = rearrange(qkv, "b n (qkv h d) -> qkv b h n d", qkv=3, h=h) |
|
|
|
dots = torch.einsum("bhid,bhjd->bhij", q, k) * self.scale |
|
|
|
attn = dots.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
|
|
out = torch.einsum("bhij,bhjd->bhid", attn, v) |
|
|
|
self.save_attention_map(attn) |
|
if register_hook: |
|
attn.register_hook(self.save_attn_gradients) |
|
|
|
out = rearrange(out, "b h n d -> b n (h d)") |
|
out = self.proj(out) |
|
out = self.proj_drop(out) |
|
return out |
|
|
|
|
|
class Block(nn.Module): |
|
def __init__( |
|
self, |
|
dim, |
|
num_heads, |
|
mlp_ratio=4.0, |
|
qkv_bias=False, |
|
drop=0.0, |
|
attn_drop=0.0, |
|
act_layer=nn.GELU, |
|
norm_layer=nn.LayerNorm, |
|
): |
|
super().__init__() |
|
self.norm1 = norm_layer(dim) |
|
self.attn = Attention( |
|
dim, |
|
num_heads=num_heads, |
|
qkv_bias=qkv_bias, |
|
attn_drop=attn_drop, |
|
proj_drop=drop, |
|
) |
|
self.norm2 = norm_layer(dim) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp = Mlp( |
|
in_features=dim, |
|
hidden_features=mlp_hidden_dim, |
|
act_layer=act_layer, |
|
drop=drop, |
|
) |
|
|
|
def forward(self, x, register_hook=False): |
|
x = x + self.attn(self.norm1(x), register_hook=register_hook) |
|
x = x + self.mlp(self.norm2(x)) |
|
return x |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
"""Image to Patch Embedding""" |
|
|
|
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): |
|
super().__init__() |
|
img_size = to_2tuple(img_size) |
|
patch_size = to_2tuple(patch_size) |
|
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) |
|
self.img_size = img_size |
|
self.patch_size = patch_size |
|
self.num_patches = num_patches |
|
|
|
self.proj = nn.Conv2d( |
|
in_chans, embed_dim, kernel_size=patch_size, stride=patch_size |
|
) |
|
|
|
def forward(self, x): |
|
B, C, H, W = x.shape |
|
|
|
assert ( |
|
H == self.img_size[0] and W == self.img_size[1] |
|
), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." |
|
x = self.proj(x).flatten(2).transpose(1, 2) |
|
return x |
|
|
|
|
|
class VisionTransformer(nn.Module): |
|
"""Vision Transformer""" |
|
|
|
def __init__( |
|
self, |
|
img_size=224, |
|
patch_size=16, |
|
in_chans=3, |
|
num_classes=1000, |
|
embed_dim=768, |
|
depth=12, |
|
num_heads=12, |
|
mlp_ratio=4.0, |
|
qkv_bias=False, |
|
drop_rate=0.0, |
|
attn_drop_rate=0.0, |
|
norm_layer=nn.LayerNorm, |
|
): |
|
super().__init__() |
|
self.num_classes = num_classes |
|
self.num_features = ( |
|
self.embed_dim |
|
) = embed_dim |
|
self.patch_embed = PatchEmbed( |
|
img_size=img_size, |
|
patch_size=patch_size, |
|
in_chans=in_chans, |
|
embed_dim=embed_dim, |
|
) |
|
num_patches = self.patch_embed.num_patches |
|
|
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) |
|
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) |
|
self.pos_drop = nn.Dropout(p=drop_rate) |
|
|
|
self.blocks = nn.ModuleList( |
|
[ |
|
Block( |
|
dim=embed_dim, |
|
num_heads=num_heads, |
|
mlp_ratio=mlp_ratio, |
|
qkv_bias=qkv_bias, |
|
drop=drop_rate, |
|
attn_drop=attn_drop_rate, |
|
norm_layer=norm_layer, |
|
) |
|
for i in range(depth) |
|
] |
|
) |
|
self.norm = norm_layer(embed_dim) |
|
|
|
|
|
self.head = ( |
|
nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() |
|
) |
|
|
|
trunc_normal_(self.pos_embed, std=0.02) |
|
trunc_normal_(self.cls_token, std=0.02) |
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=0.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
@torch.jit.ignore |
|
def no_weight_decay(self): |
|
return {"pos_embed", "cls_token"} |
|
|
|
def forward(self, x, register_hook=False): |
|
B = x.shape[0] |
|
x = self.patch_embed(x) |
|
|
|
cls_tokens = self.cls_token.expand( |
|
B, -1, -1 |
|
) |
|
x = torch.cat((cls_tokens, x), dim=1) |
|
x = x + self.pos_embed |
|
x = self.pos_drop(x) |
|
|
|
for blk in self.blocks: |
|
x = blk(x, register_hook=register_hook) |
|
|
|
x = self.norm(x) |
|
x = x[:, 0] |
|
x = self.head(x) |
|
return x |
|
|
|
|
|
def _conv_filter(state_dict, patch_size=16): |
|
"""convert patch embedding weight from manual patchify + linear proj to conv""" |
|
out_dict = {} |
|
for k, v in state_dict.items(): |
|
if "patch_embed.proj.weight" in k: |
|
v = v.reshape((v.shape[0], 3, patch_size, patch_size)) |
|
out_dict[k] = v |
|
return out_dict |
|
|
|
|
|
def vit_base_patch16_224(pretrained=False, **kwargs): |
|
model = VisionTransformer( |
|
patch_size=16, |
|
embed_dim=768, |
|
depth=12, |
|
num_heads=12, |
|
mlp_ratio=4, |
|
qkv_bias=True, |
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), |
|
**kwargs, |
|
) |
|
model.default_cfg = default_cfgs["vit_base_patch16_224"] |
|
if pretrained: |
|
load_pretrained( |
|
model, |
|
num_classes=model.num_classes, |
|
in_chans=kwargs.get("in_chans", 3), |
|
filter_fn=_conv_filter, |
|
) |
|
return model |
|
|
|
|
|
def vit_large_patch16_224(pretrained=False, **kwargs): |
|
model = VisionTransformer( |
|
patch_size=16, |
|
embed_dim=1024, |
|
depth=24, |
|
num_heads=16, |
|
mlp_ratio=4, |
|
qkv_bias=True, |
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), |
|
**kwargs, |
|
) |
|
model.default_cfg = default_cfgs["vit_large_patch16_224"] |
|
if pretrained: |
|
load_pretrained( |
|
model, num_classes=model.num_classes, in_chans=kwargs.get("in_chans", 3) |
|
) |
|
return model |
|
|