sayakpaul's picture
sayakpaul HF staff
add files
c4b2b37
raw
history blame
16.1 kB
""" Vision Transformer (ViT) in PyTorch
Hacked together by / Copyright 2020 Ross Wightman
"""
import torch
import torch.nn as nn
from baselines.ViT.helpers import load_pretrained
from baselines.ViT.layer_helpers import to_2tuple
from baselines.ViT.weight_init import trunc_normal_
from einops import rearrange
from modules.layers_lrp import *
def _cfg(url="", **kwargs):
return {
"url": url,
"num_classes": 1000,
"input_size": (3, 224, 224),
"pool_size": None,
"crop_pct": 0.9,
"interpolation": "bicubic",
"first_conv": "patch_embed.proj",
"classifier": "head",
**kwargs,
}
default_cfgs = {
# patch models
"vit_small_patch16_224": _cfg(
url="https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/vit_small_p16_224-15ec54c9.pth",
),
"vit_base_patch16_224": _cfg(
url="https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth",
mean=(0.5, 0.5, 0.5),
std=(0.5, 0.5, 0.5),
),
"vit_large_patch16_224": _cfg(
url="https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p16_224-4ee7a4dc.pth",
mean=(0.5, 0.5, 0.5),
std=(0.5, 0.5, 0.5),
),
}
def compute_rollout_attention(all_layer_matrices, start_layer=0):
# adding residual consideration
num_tokens = all_layer_matrices[0].shape[1]
batch_size = all_layer_matrices[0].shape[0]
eye = (
torch.eye(num_tokens)
.expand(batch_size, num_tokens, num_tokens)
.to(all_layer_matrices[0].device)
)
all_layer_matrices = [
all_layer_matrices[i] + eye for i in range(len(all_layer_matrices))
]
# all_layer_matrices = [all_layer_matrices[i] / all_layer_matrices[i].sum(dim=-1, keepdim=True)
# for i in range(len(all_layer_matrices))]
joint_attention = all_layer_matrices[start_layer]
for i in range(start_layer + 1, len(all_layer_matrices)):
joint_attention = all_layer_matrices[i].bmm(joint_attention)
return joint_attention
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, drop=0.0):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = Linear(in_features, hidden_features)
self.act = GELU()
self.fc2 = Linear(hidden_features, out_features)
self.drop = Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
def relprop(self, cam, **kwargs):
cam = self.drop.relprop(cam, **kwargs)
cam = self.fc2.relprop(cam, **kwargs)
cam = self.act.relprop(cam, **kwargs)
cam = self.fc1.relprop(cam, **kwargs)
return cam
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0.0, proj_drop=0.0):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
self.scale = head_dim**-0.5
# A = Q*K^T
self.matmul1 = einsum("bhid,bhjd->bhij")
# attn = A*V
self.matmul2 = einsum("bhij,bhjd->bhid")
self.qkv = Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = Dropout(attn_drop)
self.proj = Linear(dim, dim)
self.proj_drop = Dropout(proj_drop)
self.softmax = Softmax(dim=-1)
self.attn_cam = None
self.attn = None
self.v = None
self.v_cam = None
self.attn_gradients = None
def get_attn(self):
return self.attn
def save_attn(self, attn):
self.attn = attn
def save_attn_cam(self, cam):
self.attn_cam = cam
def get_attn_cam(self):
return self.attn_cam
def get_v(self):
return self.v
def save_v(self, v):
self.v = v
def save_v_cam(self, cam):
self.v_cam = cam
def get_v_cam(self):
return self.v_cam
def save_attn_gradients(self, attn_gradients):
self.attn_gradients = attn_gradients
def get_attn_gradients(self):
return self.attn_gradients
def forward(self, x):
b, n, _, h = *x.shape, self.num_heads
qkv = self.qkv(x)
q, k, v = rearrange(qkv, "b n (qkv h d) -> qkv b h n d", qkv=3, h=h)
self.save_v(v)
dots = self.matmul1([q, k]) * self.scale
attn = self.softmax(dots)
attn = self.attn_drop(attn)
self.save_attn(attn)
attn.register_hook(self.save_attn_gradients)
out = self.matmul2([attn, v])
out = rearrange(out, "b h n d -> b n (h d)")
out = self.proj(out)
out = self.proj_drop(out)
return out
def relprop(self, cam, **kwargs):
cam = self.proj_drop.relprop(cam, **kwargs)
cam = self.proj.relprop(cam, **kwargs)
cam = rearrange(cam, "b n (h d) -> b h n d", h=self.num_heads)
# attn = A*V
(cam1, cam_v) = self.matmul2.relprop(cam, **kwargs)
cam1 /= 2
cam_v /= 2
self.save_v_cam(cam_v)
self.save_attn_cam(cam1)
cam1 = self.attn_drop.relprop(cam1, **kwargs)
cam1 = self.softmax.relprop(cam1, **kwargs)
# A = Q*K^T
(cam_q, cam_k) = self.matmul1.relprop(cam1, **kwargs)
cam_q /= 2
cam_k /= 2
cam_qkv = rearrange(
[cam_q, cam_k, cam_v],
"qkv b h n d -> b n (qkv h d)",
qkv=3,
h=self.num_heads,
)
return self.qkv.relprop(cam_qkv, **kwargs)
class Block(nn.Module):
def __init__(
self, dim, num_heads, mlp_ratio=4.0, qkv_bias=False, drop=0.0, attn_drop=0.0
):
super().__init__()
self.norm1 = LayerNorm(dim, eps=1e-6)
self.attn = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
attn_drop=attn_drop,
proj_drop=drop,
)
self.norm2 = LayerNorm(dim, eps=1e-6)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, drop=drop)
self.add1 = Add()
self.add2 = Add()
self.clone1 = Clone()
self.clone2 = Clone()
def forward(self, x):
x1, x2 = self.clone1(x, 2)
x = self.add1([x1, self.attn(self.norm1(x2))])
x1, x2 = self.clone2(x, 2)
x = self.add2([x1, self.mlp(self.norm2(x2))])
return x
def relprop(self, cam, **kwargs):
(cam1, cam2) = self.add2.relprop(cam, **kwargs)
cam2 = self.mlp.relprop(cam2, **kwargs)
cam2 = self.norm2.relprop(cam2, **kwargs)
cam = self.clone2.relprop((cam1, cam2), **kwargs)
(cam1, cam2) = self.add1.relprop(cam, **kwargs)
cam2 = self.attn.relprop(cam2, **kwargs)
cam2 = self.norm1.relprop(cam2, **kwargs)
cam = self.clone1.relprop((cam1, cam2), **kwargs)
return cam
class PatchEmbed(nn.Module):
"""Image to Patch Embedding"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
self.proj = Conv2d(
in_chans, embed_dim, kernel_size=patch_size, stride=patch_size
)
def forward(self, x):
B, C, H, W = x.shape
# FIXME look at relaxing size constraints
assert (
H == self.img_size[0] and W == self.img_size[1]
), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
x = self.proj(x).flatten(2).transpose(1, 2)
return x
def relprop(self, cam, **kwargs):
cam = cam.transpose(1, 2)
cam = cam.reshape(
cam.shape[0],
cam.shape[1],
(self.img_size[0] // self.patch_size[0]),
(self.img_size[1] // self.patch_size[1]),
)
return self.proj.relprop(cam, **kwargs)
class VisionTransformer(nn.Module):
"""Vision Transformer with support for patch or hybrid CNN input stage"""
def __init__(
self,
img_size=224,
patch_size=16,
in_chans=3,
num_classes=1000,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4.0,
qkv_bias=False,
mlp_head=False,
drop_rate=0.0,
attn_drop_rate=0.0,
):
super().__init__()
self.num_classes = num_classes
self.num_features = (
self.embed_dim
) = embed_dim # num_features for consistency with other models
self.patch_embed = PatchEmbed(
img_size=img_size,
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim,
)
num_patches = self.patch_embed.num_patches
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.blocks = nn.ModuleList(
[
Block(
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
drop=drop_rate,
attn_drop=attn_drop_rate,
)
for i in range(depth)
]
)
self.norm = LayerNorm(embed_dim)
if mlp_head:
# paper diagram suggests 'MLP head', but results in 4M extra parameters vs paper
self.head = Mlp(embed_dim, int(embed_dim * mlp_ratio), num_classes)
else:
# with a single Linear layer as head, the param count within rounding of paper
self.head = Linear(embed_dim, num_classes)
# FIXME not quite sure what the proper weight init is supposed to be,
# normal / trunc normal w/ std == .02 similar to other Bert like transformers
trunc_normal_(self.pos_embed, std=0.02) # embeddings same as weights?
trunc_normal_(self.cls_token, std=0.02)
self.apply(self._init_weights)
self.pool = IndexSelect()
self.add = Add()
self.inp_grad = None
def save_inp_grad(self, grad):
self.inp_grad = grad
def get_inp_grad(self):
return self.inp_grad
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=0.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@property
def no_weight_decay(self):
return {"pos_embed", "cls_token"}
def forward(self, x):
B = x.shape[0]
x = self.patch_embed(x)
cls_tokens = self.cls_token.expand(
B, -1, -1
) # stole cls_tokens impl from Phil Wang, thanks
x = torch.cat((cls_tokens, x), dim=1)
x = self.add([x, self.pos_embed])
x.register_hook(self.save_inp_grad)
for blk in self.blocks:
x = blk(x)
x = self.norm(x)
x = self.pool(x, dim=1, indices=torch.tensor(0, device=x.device))
x = x.squeeze(1)
x = self.head(x)
return x
def relprop(
self, cam=None, method="grad", is_ablation=False, start_layer=0, **kwargs
):
# print(kwargs)
# print("conservation 1", cam.sum())
cam = self.head.relprop(cam, **kwargs)
cam = cam.unsqueeze(1)
cam = self.pool.relprop(cam, **kwargs)
cam = self.norm.relprop(cam, **kwargs)
for blk in reversed(self.blocks):
cam = blk.relprop(cam, **kwargs)
# print("conservation 2", cam.sum())
# print("min", cam.min())
if method == "full":
(cam, _) = self.add.relprop(cam, **kwargs)
cam = cam[:, 1:]
cam = self.patch_embed.relprop(cam, **kwargs)
# sum on channels
cam = cam.sum(dim=1)
return cam
elif method == "rollout":
# cam rollout
attn_cams = []
for blk in self.blocks:
attn_heads = blk.attn.get_attn_cam().clamp(min=0)
avg_heads = (attn_heads.sum(dim=1) / attn_heads.shape[1]).detach()
attn_cams.append(avg_heads)
cam = compute_rollout_attention(attn_cams, start_layer=start_layer)
cam = cam[:, 0, 1:]
return cam
elif method == "grad":
cams = []
for blk in self.blocks:
grad = blk.attn.get_attn_gradients()
cam = blk.attn.get_attn_cam()
cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1])
grad = grad[0].reshape(-1, grad.shape[-1], grad.shape[-1])
cam = grad * cam
cam = cam.clamp(min=0).mean(dim=0)
cams.append(cam.unsqueeze(0))
rollout = compute_rollout_attention(cams, start_layer=start_layer)
cam = rollout[:, 0, 1:]
return cam
elif method == "last_layer":
cam = self.blocks[-1].attn.get_attn_cam()
cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1])
if is_ablation:
grad = self.blocks[-1].attn.get_attn_gradients()
grad = grad[0].reshape(-1, grad.shape[-1], grad.shape[-1])
cam = grad * cam
cam = cam.clamp(min=0).mean(dim=0)
cam = cam[0, 1:]
return cam
elif method == "last_layer_attn":
cam = self.blocks[-1].attn.get_attn()
cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1])
cam = cam.clamp(min=0).mean(dim=0)
cam = cam[0, 1:]
return cam
elif method == "second_layer":
cam = self.blocks[1].attn.get_attn_cam()
cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1])
if is_ablation:
grad = self.blocks[1].attn.get_attn_gradients()
grad = grad[0].reshape(-1, grad.shape[-1], grad.shape[-1])
cam = grad * cam
cam = cam.clamp(min=0).mean(dim=0)
cam = cam[0, 1:]
return cam
def _conv_filter(state_dict, patch_size=16):
"""convert patch embedding weight from manual patchify + linear proj to conv"""
out_dict = {}
for k, v in state_dict.items():
if "patch_embed.proj.weight" in k:
v = v.reshape((v.shape[0], 3, patch_size, patch_size))
out_dict[k] = v
return out_dict
def vit_base_patch16_224(pretrained=False, **kwargs):
model = VisionTransformer(
patch_size=16,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4,
qkv_bias=True,
**kwargs,
)
model.default_cfg = default_cfgs["vit_base_patch16_224"]
if pretrained:
load_pretrained(
model,
num_classes=model.num_classes,
in_chans=kwargs.get("in_chans", 3),
filter_fn=_conv_filter,
)
return model
def vit_large_patch16_224(pretrained=False, **kwargs):
model = VisionTransformer(
patch_size=16,
embed_dim=1024,
depth=24,
num_heads=16,
mlp_ratio=4,
qkv_bias=True,
**kwargs,
)
model.default_cfg = default_cfgs["vit_large_patch16_224"]
if pretrained:
load_pretrained(
model, num_classes=model.num_classes, in_chans=kwargs.get("in_chans", 3)
)
return model