natolambert
commited on
Commit
•
507a14d
1
Parent(s):
d7244ec
init
Browse files- .gitignore +1 -0
- app.py +129 -0
- requirements.txt +2 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
evals/
|
app.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
from pathlib import Path
|
4 |
+
from datasets import load_dataset
|
5 |
+
import json
|
6 |
+
import os
|
7 |
+
from huggingface_hub import HfApi, Repository
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
api = HfApi()
|
11 |
+
|
12 |
+
COLLAB_TOKEN = os.environ.get("COLLAB_TOKEN")
|
13 |
+
evals_repo = "ai2-rlhf-collab/rm-benchmark-results"
|
14 |
+
BASE_DIR = "./evals/"
|
15 |
+
# def restart_space():
|
16 |
+
# api.restart_space(repo_id="ai2-rlhf-collab/rm-benchmark-viewer", token=COLLAB_TOKEN)
|
17 |
+
|
18 |
+
|
19 |
+
# From Open LLM Leaderboard
|
20 |
+
def model_hyperlink(link, model_name):
|
21 |
+
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
|
22 |
+
|
23 |
+
print("Pulling evaluation results")
|
24 |
+
repo = Repository(
|
25 |
+
local_dir=BASE_DIR,
|
26 |
+
clone_from=evals_repo,
|
27 |
+
use_auth_token=COLLAB_TOKEN,
|
28 |
+
repo_type="dataset",
|
29 |
+
)
|
30 |
+
repo.git_pull()
|
31 |
+
|
32 |
+
# Define a function to fetch and process data
|
33 |
+
def fetch_and_display_data(): # use HF api to pull the git repo
|
34 |
+
dir = Path(BASE_DIR)
|
35 |
+
data_dir = dir / "data"
|
36 |
+
orgs = [d for d in os.listdir(data_dir) if os.path.isdir(os.path.join(data_dir, d))]
|
37 |
+
# get all files within the sub folders orgs
|
38 |
+
models_results = []
|
39 |
+
for org in orgs:
|
40 |
+
org_dir = data_dir / org
|
41 |
+
files = [f for f in os.listdir(org_dir) if os.path.isfile(os.path.join(org_dir, f))]
|
42 |
+
for file in files:
|
43 |
+
if file.endswith(".json"):
|
44 |
+
models_results.append(org + "/" + file)
|
45 |
+
|
46 |
+
# create empty dataframe to add all data to
|
47 |
+
df = pd.DataFrame()
|
48 |
+
|
49 |
+
# load all json data in the list models_results one by one to avoid not having the same entries
|
50 |
+
for model in models_results:
|
51 |
+
model_data = load_dataset("json", data_files=BASE_DIR + "data/" + model, split="train")
|
52 |
+
df2 = pd.DataFrame(model_data)
|
53 |
+
# add to df
|
54 |
+
df = pd.concat([df2, df])
|
55 |
+
|
56 |
+
|
57 |
+
# remove chat_template comlumn
|
58 |
+
df = df.drop(columns=["chat_template"])
|
59 |
+
|
60 |
+
# move column "model" to the front
|
61 |
+
cols = list(df.columns)
|
62 |
+
cols.insert(0, cols.pop(cols.index('model')))
|
63 |
+
df = df.loc[:, cols]
|
64 |
+
|
65 |
+
# select all columns except "model"
|
66 |
+
cols = df.columns.tolist()
|
67 |
+
cols.remove("model")
|
68 |
+
# round
|
69 |
+
df[cols] = df[cols].round(2)
|
70 |
+
avg = np.mean(df[cols].values,axis=1).round(2)
|
71 |
+
# add average column
|
72 |
+
df["average"] = avg
|
73 |
+
|
74 |
+
# apply model_hyperlink function to column "model"
|
75 |
+
df["model"] = df["model"].apply(lambda x: model_hyperlink(f"https://huggingface.co/{x}", x))
|
76 |
+
|
77 |
+
# move average column to the second
|
78 |
+
cols = list(df.columns)
|
79 |
+
cols.insert(1, cols.pop(cols.index('average')))
|
80 |
+
df = df.loc[:, cols]
|
81 |
+
return df
|
82 |
+
|
83 |
+
benchmark_text = """
|
84 |
+
# HERM Results Viewer
|
85 |
+
|
86 |
+
We compute the win percentage for a reward model on hand curated chosen-rejected pairs for each prompt.
|
87 |
+
A win is when the score for the chosen response is higher than the score for the rejected response.
|
88 |
+
|
89 |
+
### Subset summary
|
90 |
+
|
91 |
+
| Subset | Num. Samples (Pre-filtering, post-filtering) | Description |
|
92 |
+
| :--------------------- | :------------------------------------------: | :---------------------------------------------------------------- |
|
93 |
+
| alpacaeval-easy | 805 | Great model vs poor model |
|
94 |
+
| alpacaeval-length | 805 | Good model vs low model, equal length |
|
95 |
+
| alpacaeval-hard | 805 | Great model vs baseline model |
|
96 |
+
| mt-bench-easy | 28, 28 | MT Bench 10s vs 1s |
|
97 |
+
| mt-bench-medium | 45, 40 | MT Bench 9s vs 2-5s |
|
98 |
+
| mt-bench-hard | 45, 37 | MT Bench 7-8 vs 5-6 |
|
99 |
+
| refusals-dangerous | 505 | Dangerous response vs no response |
|
100 |
+
| refusals-offensive | 704 | Offensive response vs no response |
|
101 |
+
| llmbar-natural | 100 | (See [paper](https://arxiv.org/abs/2310.07641)) Manually curated instruction pairs |
|
102 |
+
| llmbar-adver-neighbor | 134 | (See [paper](https://arxiv.org/abs/2310.07641)) Instruction response vs. off-topic prompt response |
|
103 |
+
| llmbar-adver-GPTInst | 92 | (See [paper](https://arxiv.org/abs/2310.07641)) Instruction response vs. GPT4 generated off-topic prompt response |
|
104 |
+
| llmbar-adver-GPTOut | 47 | (See [paper](https://arxiv.org/abs/2310.07641)) Instruction response vs. unhelpful-prompted GPT4 responses |
|
105 |
+
| llmbar-adver-manual | 46 | (See [paper](https://arxiv.org/abs/2310.07641)) Challenge set chosen vs. rejected |
|
106 |
+
| XSTest | 450 | TODO curate |
|
107 |
+
| (?) repetitiveness | | |
|
108 |
+
| (?) grammar | | |
|
109 |
+
|
110 |
+
|
111 |
+
For more details, see the [dataset](https://huggingface.co/datasets/ai2-rlhf-collab/rm-benchmark-dev).
|
112 |
+
"""
|
113 |
+
leaderboard_data = fetch_and_display_data()
|
114 |
+
with gr.Blocks() as app:
|
115 |
+
with gr.Row():
|
116 |
+
gr.Markdown(benchmark_text)
|
117 |
+
|
118 |
+
with gr.Row():
|
119 |
+
output_table = gr.Dataframe(
|
120 |
+
leaderboard_data.values,
|
121 |
+
headers=leaderboard_data.columns.tolist(),
|
122 |
+
)
|
123 |
+
|
124 |
+
# Load data when app starts
|
125 |
+
def load_data_on_start():
|
126 |
+
data = fetch_and_display_data()
|
127 |
+
output_table.update(data)
|
128 |
+
|
129 |
+
app.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
pandas
|
2 |
+
datasets
|