natolambert
commited on
Commit
•
56fcfaf
1
Parent(s):
90eea3b
length experiment
Browse files- app.py +72 -0
- src/utils.py +5 -0
app.py
CHANGED
@@ -63,14 +63,78 @@ def avg_over_herm(dataframe):
|
|
63 |
def expand_subsets(dataframe):
|
64 |
# TODO need to modify data/ script to do this
|
65 |
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
herm_data = load_all_data(repo_dir_herm).sort_values(by='average', ascending=False)
|
68 |
herm_data_avg = avg_over_herm(herm_data).sort_values(by='average', ascending=False)
|
|
|
69 |
prefs_data = load_all_data(repo_dir_prefs).sort_values(by='average', ascending=False)
|
70 |
# prefs_data_sub = expand_subsets(prefs_data).sort_values(by='average', ascending=False)
|
71 |
|
72 |
col_types_herm = ["markdown"] + ["number"] * (len(herm_data.columns) - 1)
|
73 |
col_types_herm_avg = ["markdown"] + ["number"] * (len(herm_data_avg.columns) - 1)
|
|
|
74 |
col_types_prefs = ["markdown"] + ["number"] * (len(prefs_data.columns) - 1)
|
75 |
# col_types_prefs_sub = ["markdown"] + ["number"] * (len(prefs_data_sub.columns) - 1)
|
76 |
|
@@ -114,6 +178,14 @@ with gr.Blocks() as app:
|
|
114 |
headers=herm_data.columns.tolist(),
|
115 |
elem_id="herm_dataframe",
|
116 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
with gr.TabItem("Pref Sets - Overview"):
|
118 |
pref_sets_table = gr.Dataframe(
|
119 |
prefs_data.values,
|
|
|
63 |
def expand_subsets(dataframe):
|
64 |
# TODO need to modify data/ script to do this
|
65 |
pass
|
66 |
+
|
67 |
+
# reference for length bias categories
|
68 |
+
length_categories = {
|
69 |
+
'alpacaeval-easy': 'True',
|
70 |
+
'alpacaeval-hard': 'True',
|
71 |
+
'alpacaeval-length': 'Neutral',
|
72 |
+
'donotanswer': 'False',
|
73 |
+
'hep-cpp': 'Neutral',
|
74 |
+
'hep-go': 'Neutral',
|
75 |
+
'hep-java': 'Neutral',
|
76 |
+
'hep-js': 'Neutral',
|
77 |
+
'hep-python': 'Neutral',
|
78 |
+
'hep-rust': 'Neutral',
|
79 |
+
'llmbar-adver-GPTInst': 'False',
|
80 |
+
'llmbar-adver-GPTOut': 'Neutral',
|
81 |
+
'llmbar-adver-manual': 'False',
|
82 |
+
'llmbar-adver-neighbor': 'False',
|
83 |
+
'llmbar-natural': 'Neutral',
|
84 |
+
'mt-bench-easy': 'False',
|
85 |
+
'mt-bench-hard': 'False',
|
86 |
+
'mt-bench-med': 'Neutral',
|
87 |
+
'refusals-dangerous': 'False',
|
88 |
+
'refusals-offensive': 'False',
|
89 |
+
'xstest-should-refuse': 'False',
|
90 |
+
'xstest-should-respond': 'True'
|
91 |
+
}
|
92 |
+
|
93 |
+
def length_bias_check(dataframe):
|
94 |
+
"""
|
95 |
+
Takes the raw herm dataframe and splits the data into new buckets according to length_categories.
|
96 |
+
Then, take the average of the three buckets as "average"
|
97 |
+
"""
|
98 |
+
new_df = dataframe.copy()
|
99 |
+
existing_subsets = new_df.columns[2:]
|
100 |
+
final_subsets = ["Length Bias", "Neutral", "Terse Bias"]
|
101 |
+
# new data is empty list dict for each final subset
|
102 |
+
new_data = {s: [] for s in final_subsets}
|
103 |
+
|
104 |
+
# now, subsets correspond to those with True, Nuetral, and False length bias
|
105 |
+
# check if length_categories[subset] == "True" or "False" or "Neutral"
|
106 |
+
for subset in existing_subsets:
|
107 |
+
subset_data = new_df[subset].values
|
108 |
+
subset_length = length_categories[subset]
|
109 |
+
# route to the correct bucket
|
110 |
+
if subset_length == "True":
|
111 |
+
new_data["Length Bias"].append(subset_data)
|
112 |
+
elif subset_length == "Neutral":
|
113 |
+
new_data["Neutral"].append(subset_data)
|
114 |
+
elif subset_length == "False":
|
115 |
+
new_data["Terse Bias"].append(subset_data)
|
116 |
+
|
117 |
+
# take average of new_data and add to new_df (removing other columns than model)
|
118 |
+
for subset in final_subsets:
|
119 |
+
new_df[subset] = np.round(np.nanmean(new_data[subset], axis=0), 2)
|
120 |
+
keep_columns = ["model"] + final_subsets
|
121 |
+
new_df = new_df[keep_columns]
|
122 |
+
# recompute average
|
123 |
+
# new_df["average"] = np.round(np.nanmean(new_df[final_subsets].values, axis=1), 2)
|
124 |
+
|
125 |
+
return new_df
|
126 |
+
|
127 |
+
|
128 |
|
129 |
herm_data = load_all_data(repo_dir_herm).sort_values(by='average', ascending=False)
|
130 |
herm_data_avg = avg_over_herm(herm_data).sort_values(by='average', ascending=False)
|
131 |
+
herm_data_length = length_bias_check(herm_data).sort_values(by='Terse Bias', ascending=False)
|
132 |
prefs_data = load_all_data(repo_dir_prefs).sort_values(by='average', ascending=False)
|
133 |
# prefs_data_sub = expand_subsets(prefs_data).sort_values(by='average', ascending=False)
|
134 |
|
135 |
col_types_herm = ["markdown"] + ["number"] * (len(herm_data.columns) - 1)
|
136 |
col_types_herm_avg = ["markdown"] + ["number"] * (len(herm_data_avg.columns) - 1)
|
137 |
+
cols_herm_data_length = ["markdown"] + ["number"] * (len(herm_data_length.columns) - 1)
|
138 |
col_types_prefs = ["markdown"] + ["number"] * (len(prefs_data.columns) - 1)
|
139 |
# col_types_prefs_sub = ["markdown"] + ["number"] * (len(prefs_data_sub.columns) - 1)
|
140 |
|
|
|
178 |
headers=herm_data.columns.tolist(),
|
179 |
elem_id="herm_dataframe",
|
180 |
)
|
181 |
+
with gr.TabItem("HERM - Length Bias"):
|
182 |
+
with gr.Row():
|
183 |
+
herm_table = gr.Dataframe(
|
184 |
+
herm_data_length.values,
|
185 |
+
datatype=cols_herm_data_length,
|
186 |
+
headers=herm_data_length.columns.tolist(),
|
187 |
+
elem_id="herm_dataframe_length",
|
188 |
+
)
|
189 |
with gr.TabItem("Pref Sets - Overview"):
|
190 |
pref_sets_table = gr.Dataframe(
|
191 |
prefs_data.values,
|
src/utils.py
CHANGED
@@ -62,4 +62,9 @@ def load_all_data(data_repo, subsubsets=False): # use HF api to pull the git
|
|
62 |
cols = list(df.columns)
|
63 |
cols.insert(1, cols.pop(cols.index('average')))
|
64 |
df = df.loc[:, cols]
|
|
|
|
|
|
|
|
|
|
|
65 |
return df
|
|
|
62 |
cols = list(df.columns)
|
63 |
cols.insert(1, cols.pop(cols.index('average')))
|
64 |
df = df.loc[:, cols]
|
65 |
+
|
66 |
+
# remove columns xstest (outdated data)
|
67 |
+
# if xstest is a column
|
68 |
+
if "xstest" in df.columns:
|
69 |
+
df = df.drop(columns=["xstest"])
|
70 |
return df
|