Shane
commited on
Commit
•
63c5ebf
1
Parent(s):
ed3c3e8
edited some files
Browse files- app.py +2 -2
- src/md.py +3 -94
- src/md_old.py +105 -0
- src/utils.py +11 -6
app.py
CHANGED
@@ -36,7 +36,7 @@ href_data_nongreedy = prep_df(load_all_data(local_result_dir, subdir="temperatur
|
|
36 |
|
37 |
col_types_href = ["number"] + ["markdown"] + ["number"] * int((len(href_data_greedy.columns) - 1) / 2)
|
38 |
col_types_href_hidden = ["number"] + ["markdown"] + ["number"] * (len(href_data_greedy.columns) - 1)
|
39 |
-
categories = ['Brainstorm', 'Open QA', 'Closed QA', 'Extract', 'Generation', 'Rewrite', 'Summarize', 'Classify', "Reasoning Over Numerical Data", "Multi-Document Synthesis", "Fact Checking or Attributed QA"]
|
40 |
# categories = ['Average', 'Brainstorm', 'Open QA', 'Closed QA', 'Extract', 'Generation', 'Rewrite', 'Summarize', 'Classify']
|
41 |
|
42 |
# for showing random samples
|
@@ -77,7 +77,7 @@ def regex_table(dataframe, regex, selected_category, style=True):
|
|
77 |
|
78 |
if style:
|
79 |
# Format for different columns
|
80 |
-
format_dict = {col: "{:.1f}" for col in data.columns if col not in ['Average', 'Model', 'Rank']}
|
81 |
format_dict['Average'] = "{:.2f}"
|
82 |
data = data.style.format(format_dict, na_rep='').set_properties(**{'text-align': 'right'})
|
83 |
return data
|
|
|
36 |
|
37 |
col_types_href = ["number"] + ["markdown"] + ["number"] * int((len(href_data_greedy.columns) - 1) / 2)
|
38 |
col_types_href_hidden = ["number"] + ["markdown"] + ["number"] * (len(href_data_greedy.columns) - 1)
|
39 |
+
categories = ['Average', 'Brainstorm', 'Open QA', 'Closed QA', 'Extract', 'Generation', 'Rewrite', 'Summarize', 'Classify', "Reasoning Over Numerical Data", "Multi-Document Synthesis", "Fact Checking or Attributed QA"]
|
40 |
# categories = ['Average', 'Brainstorm', 'Open QA', 'Closed QA', 'Extract', 'Generation', 'Rewrite', 'Summarize', 'Classify']
|
41 |
|
42 |
# for showing random samples
|
|
|
77 |
|
78 |
if style:
|
79 |
# Format for different columns
|
80 |
+
format_dict = {col: "{:.1f}" for col in data.columns if col not in ['Average', 'Model', 'Rank', '95% CI']}
|
81 |
format_dict['Average'] = "{:.2f}"
|
82 |
data = data.style.format(format_dict, na_rep='').set_properties(**{'text-align': 'right'})
|
83 |
return data
|
src/md.py
CHANGED
@@ -2,104 +2,13 @@ from datetime import datetime
|
|
2 |
import pytz
|
3 |
|
4 |
ABOUT_TEXT = """
|
5 |
-
|
6 |
-
A win is when the score for the chosen response is higher than the score for the rejected response.
|
7 |
-
|
8 |
-
Note: Models with (*) after the model name are independently submitted model scores which have not been verified by the RewardBench team.
|
9 |
-
|
10 |
-
## Overview
|
11 |
-
|
12 |
-
We average over 4 core sections (per prompt weighting):
|
13 |
-
1. **Chat**: Includes the easy chat subsets (alpacaeval-easy, alpacaeval-length, alpacaeval-hard, mt-bench-easy, mt-bench-medium)
|
14 |
-
2. **Chat Hard**: Includes the hard chat subsets (mt-bench-hard, llmbar-natural, llmbar-adver-neighbor, llmbar-adver-GPTInst, llmbar-adver-GPTOut, llmbar-adver-manual)
|
15 |
-
3. **Safety**: Includes the safety subsets (refusals-dangerous, refusals-offensive, xstest-should-refuse, xstest-should-respond, do not answer)
|
16 |
-
4. **Reasoning**: Includes the code and math subsets (math-prm, hep-cpp, hep-go, hep-java, hep-js, hep-python, hep-rust)
|
17 |
-
|
18 |
-
For Reasoning, we increase the weight of the PRM-Math subset so code and math abilities are weighed equally in the final number, rather than increasing the relevance of code.
|
19 |
-
We add a final column, **Prior Sets** -- includes the test sets ([anthropic_helpful](https://huggingface.co/datasets/Anthropic/hh-rlhf), [anthropic_hhh](https://huggingface.co/datasets/HuggingFaceH4/hhh_alignment), [shp](https://huggingface.co/datasets/stanfordnlp/SHP), [summarize](https://huggingface.co/datasets/openai/summarize_from_feedback))
|
20 |
-
Prior sets is weighted 0.5x in the final score to avoid gamification by training on the available training sets of Anthropic HH, SHP, and Summarize.
|
21 |
-
|
22 |
-
Once all subsets weighted averages are achieved, the final RewardBench score is the average across the 5 subset scores.
|
23 |
-
|
24 |
-
|
25 |
-
We include multiple types of reward models in this evaluation:
|
26 |
-
1. **Sequence Classifiers** (Seq. Classifier): A model, normally trained with HuggingFace AutoModelForSequenceClassification, that takes in a prompt and a response and outputs a score.
|
27 |
-
2. **Custom Classifiers**: Research models with different architectures and training objectives to either take in two inputs at once or generate scores differently (e.g. PairRM and Stanford SteamSHP).
|
28 |
-
3. **DPO**: Models trained with Direct Preference Optimization (DPO), with modifiers such as `-ref-free` or `-norm` changing how scores are computed. *Note*: This also includes other models trained with implicit rewards, such as those trained with [KTO](https://arxiv.org/abs/2402.01306).
|
29 |
-
4. **Random**: Random choice baseline.
|
30 |
-
4. **Generative**: Prompting fine-tuned models to choose between two answers, similar to MT Bench and AlpacaEval.
|
31 |
-
|
32 |
-
All models are evaluated in fp16 expect for Starling-7B, which is evaluated in fp32.
|
33 |
-
*Note*: The reference models for DPO models (and other implicit rewards) can be found in two ways.
|
34 |
-
* Click on a specific model in results and you'll see a key `ref_model`, e.g. [Qwen](https://huggingface.co/datasets/allenai/reward-bench-results/blob/main/eval-set/Qwen/Qwen1.5-72B-Chat.json).
|
35 |
-
* All the reference models are listed in the [evaluation configs](https://github.com/allenai/reward-bench/blob/main/scripts/configs/eval_configs.yaml).
|
36 |
-
|
37 |
-
|
38 |
-
### Subset Details
|
39 |
-
|
40 |
-
Total number of the prompts is: 2985, filtered from 5123.
|
41 |
-
|
42 |
-
| Subset | Num. Samples (Pre-filtering, post-filtering) | Description |
|
43 |
-
| :---------- | :-----: | :---------: |
|
44 |
-
| alpacaeval-easy | 805, 100 | Great model vs poor model |
|
45 |
-
| alpacaeval-length | 805, 95 | Good model vs low model, equal length |
|
46 |
-
| alpacaeval-hard | 805, 95 | Great model vs baseline model |
|
47 |
-
| mt-bench-easy | 28, 28 | MT Bench 10s vs 1s |
|
48 |
-
| mt-bench-medium | 45, 40 | MT Bench 9s vs 2-5s |
|
49 |
-
| mt-bench-hard | 45, 37 | MT Bench 7-8 vs 5-6 |
|
50 |
-
| refusals-dangerous | 505, 100 | Dangerous response vs no response |
|
51 |
-
| refusals-offensive | 704, 100 | Offensive response vs no response |
|
52 |
-
| llmbar-natural | 100 | (See [paper](https://arxiv.org/abs/2310.07641)) Manually curated instruction pairs |
|
53 |
-
| llmbar-adver-neighbor | 134 | (See [paper](https://arxiv.org/abs/2310.07641)) Instruction response vs. off-topic prompt response |
|
54 |
-
| llmbar-adver-GPTInst | 92 | (See [paper](https://arxiv.org/abs/2310.07641)) Instruction response vs. GPT4 generated off-topic prompt response |
|
55 |
-
| llmbar-adver-GPTOut | 47 | (See [paper](https://arxiv.org/abs/2310.07641)) Instruction response vs. unhelpful-prompted GPT4 responses |
|
56 |
-
| llmbar-adver-manual | 46 | (See [paper](https://arxiv.org/abs/2310.07641)) Challenge set chosen vs. rejected |
|
57 |
-
| xstest-should-refuse | 450, 154 | False response dataset (see [paper](https://arxiv.org/abs/2308.01263)) |
|
58 |
-
| xstest-should-respond | 450, 250 | False refusal dataset (see [paper](https://arxiv.org/abs/2308.01263)) |
|
59 |
-
| do not answer | 939, 136 | [Prompts which responsible LLMs do not answer](https://huggingface.co/datasets/LibrAI/do-not-answer) |
|
60 |
-
| math-prm | 447 | Human references vs. model error from OpenAI's Let's Verify Step by Step |
|
61 |
-
| hep-cpp | 164 | C++ code revisions (See [dataset](https://huggingface.co/datasets/bigcode/humanevalpack) or [paper](https://arxiv.org/abs/2308.07124)) |
|
62 |
-
| hep-go | 164 | Go code |
|
63 |
-
| hep-java | 164 | Java code |
|
64 |
-
| hep-js | 164 | Javascript code |
|
65 |
-
| hep-python | 164 | Python code |
|
66 |
-
| hep-rust | 164 | Rust code |
|
67 |
-
|
68 |
-
Lengths (mean, std. dev.) include the prompt
|
69 |
-
|
70 |
-
| subset | length bias | chosen_chars | rejected_chars | chosen_tokens | rejected_tokens | chosen_unique_tokens | rejected_unique_tokens |
|
71 |
-
|-----------------------|-------------|----------------|------------------|-----------------|-------------------|------------------------|--------------------------|
|
72 |
-
| alpacaeval-easy | True | 2283 (1138) | 646 (482) | 591 (303) | 167 (139) | 253 (117) | 83 (46) |
|
73 |
-
| alpacaeval-hard | True | 1590 (769) | 526 (430) | 412 (199) | 137 (117) | 173 (67) | 71 (48) |
|
74 |
-
| alpacaeval-length | Neutral | 2001 (1137) | 2127 (1787) | 511 (283) | 597 (530) | 192 (85) | 189 (99) |
|
75 |
-
| donotanswer | False | 755 (722) | 1389 (695) | 170 (161) | 320 (164) | 104 (82) | 157 (73) |
|
76 |
-
| hep-cpp | Neutral | 709 (341) | 705 (342) | 261 (125) | 259 (125) | 100 (29) | 99 (29) |
|
77 |
-
| hep-go | Neutral | 738 (361) | 734 (361) | 266 (118) | 265 (118) | 100 (29) | 99 (29) |
|
78 |
-
| hep-java | Neutral | 821 (393) | 814 (390) | 263 (123) | 261 (122) | 102 (30) | 102 (30) |
|
79 |
-
| hep-js | Neutral | 677 (341) | 673 (339) | 251 (129) | 250 (128) | 93 (29) | 93 (29) |
|
80 |
-
| hep-python | Neutral | 618 (301) | 616 (300) | 212 (98) | 211 (98) | 86 (26) | 85 (26) |
|
81 |
-
| hep-rust | Neutral | 666 (391) | 660 (391) | 221 (132) | 219 (132) | 95 (29) | 95 (29) |
|
82 |
-
| llmbar-adver-GPTInst | False | 735 (578) | 1623 (1055) | 170 (135) | 377 (245) | 93 (59) | 179 (106) |
|
83 |
-
| llmbar-adver-GPTOut | Neutral | 378 (339) | 359 (319) | 96 (81) | 101 (94) | 60 (45) | 55 (41) |
|
84 |
-
| llmbar-adver-manual | False | 666 (584) | 1139 (866) | 160 (134) | 264 (194) | 92 (63) | 140 (90) |
|
85 |
-
| llmbar-adver-neighbor | False | 287 (297) | 712 (749) | 70 (76) | 173 (175) | 43 (31) | 91 (70) |
|
86 |
-
| llmbar-natural | Neutral | 553 (644) | 530 (597) | 139 (162) | 130 (140) | 75 (71) | 70 (62) |
|
87 |
-
| mt-bench-easy | False | 1563 (720) | 2129 (1520) | 377 (159) | 551 (415) | 166 (55) | 116 (62) |
|
88 |
-
| mt-bench-hard | False | 1225 (499) | 1471 (1016) | 284 (116) | 349 (234) | 131 (45) | 136 (58) |
|
89 |
-
| mt-bench-med | Neutral | 1558 (729) | 1733 (1312) | 377 (170) | 410 (311) | 162 (58) | 145 (88) |
|
90 |
-
| refusals-dangerous | False | 597 (81) | 1828 (547) | 131 (20) | 459 (136) | 90 (12) | 211 (50) |
|
91 |
-
| refusals-offensive | False | 365 (116) | 1092 (1146) | 82 (25) | 299 (278) | 64 (15) | 134 (101) |
|
92 |
-
| xstest-should-refuse | False | 584 (419) | 904 (493) | 129 (89) | 217 (115) | 81 (47) | 116 (53) |
|
93 |
-
| xstest-should-respond | True | 771 (420) | 466 (427) | 189 (105) | 107 (94) | 104 (48) | 67 (48) |
|
94 |
-
|
95 |
-
For more details, see the [dataset](https://huggingface.co/datasets/allenai/reward-bench).
|
96 |
"""
|
97 |
|
98 |
# Get Pacific time zone (handles PST/PDT automatically)
|
99 |
pacific_tz = pytz.timezone('America/Los_Angeles')
|
100 |
current_time = datetime.now(pacific_tz).strftime("%H:%M %Z, %d %b %Y")
|
101 |
|
102 |
-
TOP_TEXT = f"""#
|
103 |
-
|
104 |
-
[Code](https://github.com/allenai/reward-bench) | [Eval. Dataset](https://huggingface.co/datasets/allenai/reward-bench) | [Prior Test Sets](https://huggingface.co/datasets/allenai/pref-test-sets) | [Results](https://huggingface.co/datasets/allenai/reward-bench-results) | [Paper](https://arxiv.org/abs/2403.13787) | Total models: {{}} | * Unverified models | ⚠️ Dataset Contamination | Last restart (PST): {current_time}
|
105 |
"""
|
|
|
2 |
import pytz
|
3 |
|
4 |
ABOUT_TEXT = """
|
5 |
+
TODO
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
"""
|
7 |
|
8 |
# Get Pacific time zone (handles PST/PDT automatically)
|
9 |
pacific_tz = pytz.timezone('America/Los_Angeles')
|
10 |
current_time = datetime.now(pacific_tz).strftime("%H:%M %Z, %d %b %Y")
|
11 |
|
12 |
+
TOP_TEXT = f"""# HREF: Human Reference Guided Evaluation for Instructiong Following
|
13 |
+
[Code]() | [Eval. Dataset]() | [Prior Test Sets]() | [Results]() | [Paper]() | Total models: {{}} | * Unverified models | ⚠️ Dataset Contamination | Last restart (PST): {current_time}
|
|
|
14 |
"""
|
src/md_old.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import datetime
|
2 |
+
import pytz
|
3 |
+
|
4 |
+
ABOUT_TEXT = """
|
5 |
+
We compute the win percentage for a reward model on hand curated chosen-rejected pairs for each prompt.
|
6 |
+
A win is when the score for the chosen response is higher than the score for the rejected response.
|
7 |
+
|
8 |
+
Note: Models with (*) after the model name are independently submitted model scores which have not been verified by the RewardBench team.
|
9 |
+
|
10 |
+
## Overview
|
11 |
+
|
12 |
+
We average over 4 core sections (per prompt weighting):
|
13 |
+
1. **Chat**: Includes the easy chat subsets (alpacaeval-easy, alpacaeval-length, alpacaeval-hard, mt-bench-easy, mt-bench-medium)
|
14 |
+
2. **Chat Hard**: Includes the hard chat subsets (mt-bench-hard, llmbar-natural, llmbar-adver-neighbor, llmbar-adver-GPTInst, llmbar-adver-GPTOut, llmbar-adver-manual)
|
15 |
+
3. **Safety**: Includes the safety subsets (refusals-dangerous, refusals-offensive, xstest-should-refuse, xstest-should-respond, do not answer)
|
16 |
+
4. **Reasoning**: Includes the code and math subsets (math-prm, hep-cpp, hep-go, hep-java, hep-js, hep-python, hep-rust)
|
17 |
+
|
18 |
+
For Reasoning, we increase the weight of the PRM-Math subset so code and math abilities are weighed equally in the final number, rather than increasing the relevance of code.
|
19 |
+
We add a final column, **Prior Sets** -- includes the test sets ([anthropic_helpful](https://huggingface.co/datasets/Anthropic/hh-rlhf), [anthropic_hhh](https://huggingface.co/datasets/HuggingFaceH4/hhh_alignment), [shp](https://huggingface.co/datasets/stanfordnlp/SHP), [summarize](https://huggingface.co/datasets/openai/summarize_from_feedback))
|
20 |
+
Prior sets is weighted 0.5x in the final score to avoid gamification by training on the available training sets of Anthropic HH, SHP, and Summarize.
|
21 |
+
|
22 |
+
Once all subsets weighted averages are achieved, the final RewardBench score is the average across the 5 subset scores.
|
23 |
+
|
24 |
+
|
25 |
+
We include multiple types of reward models in this evaluation:
|
26 |
+
1. **Sequence Classifiers** (Seq. Classifier): A model, normally trained with HuggingFace AutoModelForSequenceClassification, that takes in a prompt and a response and outputs a score.
|
27 |
+
2. **Custom Classifiers**: Research models with different architectures and training objectives to either take in two inputs at once or generate scores differently (e.g. PairRM and Stanford SteamSHP).
|
28 |
+
3. **DPO**: Models trained with Direct Preference Optimization (DPO), with modifiers such as `-ref-free` or `-norm` changing how scores are computed. *Note*: This also includes other models trained with implicit rewards, such as those trained with [KTO](https://arxiv.org/abs/2402.01306).
|
29 |
+
4. **Random**: Random choice baseline.
|
30 |
+
4. **Generative**: Prompting fine-tuned models to choose between two answers, similar to MT Bench and AlpacaEval.
|
31 |
+
|
32 |
+
All models are evaluated in fp16 expect for Starling-7B, which is evaluated in fp32.
|
33 |
+
*Note*: The reference models for DPO models (and other implicit rewards) can be found in two ways.
|
34 |
+
* Click on a specific model in results and you'll see a key `ref_model`, e.g. [Qwen](https://huggingface.co/datasets/allenai/reward-bench-results/blob/main/eval-set/Qwen/Qwen1.5-72B-Chat.json).
|
35 |
+
* All the reference models are listed in the [evaluation configs](https://github.com/allenai/reward-bench/blob/main/scripts/configs/eval_configs.yaml).
|
36 |
+
|
37 |
+
|
38 |
+
### Subset Details
|
39 |
+
|
40 |
+
Total number of the prompts is: 2985, filtered from 5123.
|
41 |
+
|
42 |
+
| Subset | Num. Samples (Pre-filtering, post-filtering) | Description |
|
43 |
+
| :---------- | :-----: | :---------: |
|
44 |
+
| alpacaeval-easy | 805, 100 | Great model vs poor model |
|
45 |
+
| alpacaeval-length | 805, 95 | Good model vs low model, equal length |
|
46 |
+
| alpacaeval-hard | 805, 95 | Great model vs baseline model |
|
47 |
+
| mt-bench-easy | 28, 28 | MT Bench 10s vs 1s |
|
48 |
+
| mt-bench-medium | 45, 40 | MT Bench 9s vs 2-5s |
|
49 |
+
| mt-bench-hard | 45, 37 | MT Bench 7-8 vs 5-6 |
|
50 |
+
| refusals-dangerous | 505, 100 | Dangerous response vs no response |
|
51 |
+
| refusals-offensive | 704, 100 | Offensive response vs no response |
|
52 |
+
| llmbar-natural | 100 | (See [paper](https://arxiv.org/abs/2310.07641)) Manually curated instruction pairs |
|
53 |
+
| llmbar-adver-neighbor | 134 | (See [paper](https://arxiv.org/abs/2310.07641)) Instruction response vs. off-topic prompt response |
|
54 |
+
| llmbar-adver-GPTInst | 92 | (See [paper](https://arxiv.org/abs/2310.07641)) Instruction response vs. GPT4 generated off-topic prompt response |
|
55 |
+
| llmbar-adver-GPTOut | 47 | (See [paper](https://arxiv.org/abs/2310.07641)) Instruction response vs. unhelpful-prompted GPT4 responses |
|
56 |
+
| llmbar-adver-manual | 46 | (See [paper](https://arxiv.org/abs/2310.07641)) Challenge set chosen vs. rejected |
|
57 |
+
| xstest-should-refuse | 450, 154 | False response dataset (see [paper](https://arxiv.org/abs/2308.01263)) |
|
58 |
+
| xstest-should-respond | 450, 250 | False refusal dataset (see [paper](https://arxiv.org/abs/2308.01263)) |
|
59 |
+
| do not answer | 939, 136 | [Prompts which responsible LLMs do not answer](https://huggingface.co/datasets/LibrAI/do-not-answer) |
|
60 |
+
| math-prm | 447 | Human references vs. model error from OpenAI's Let's Verify Step by Step |
|
61 |
+
| hep-cpp | 164 | C++ code revisions (See [dataset](https://huggingface.co/datasets/bigcode/humanevalpack) or [paper](https://arxiv.org/abs/2308.07124)) |
|
62 |
+
| hep-go | 164 | Go code |
|
63 |
+
| hep-java | 164 | Java code |
|
64 |
+
| hep-js | 164 | Javascript code |
|
65 |
+
| hep-python | 164 | Python code |
|
66 |
+
| hep-rust | 164 | Rust code |
|
67 |
+
|
68 |
+
Lengths (mean, std. dev.) include the prompt
|
69 |
+
|
70 |
+
| subset | length bias | chosen_chars | rejected_chars | chosen_tokens | rejected_tokens | chosen_unique_tokens | rejected_unique_tokens |
|
71 |
+
|-----------------------|-------------|----------------|------------------|-----------------|-------------------|------------------------|--------------------------|
|
72 |
+
| alpacaeval-easy | True | 2283 (1138) | 646 (482) | 591 (303) | 167 (139) | 253 (117) | 83 (46) |
|
73 |
+
| alpacaeval-hard | True | 1590 (769) | 526 (430) | 412 (199) | 137 (117) | 173 (67) | 71 (48) |
|
74 |
+
| alpacaeval-length | Neutral | 2001 (1137) | 2127 (1787) | 511 (283) | 597 (530) | 192 (85) | 189 (99) |
|
75 |
+
| donotanswer | False | 755 (722) | 1389 (695) | 170 (161) | 320 (164) | 104 (82) | 157 (73) |
|
76 |
+
| hep-cpp | Neutral | 709 (341) | 705 (342) | 261 (125) | 259 (125) | 100 (29) | 99 (29) |
|
77 |
+
| hep-go | Neutral | 738 (361) | 734 (361) | 266 (118) | 265 (118) | 100 (29) | 99 (29) |
|
78 |
+
| hep-java | Neutral | 821 (393) | 814 (390) | 263 (123) | 261 (122) | 102 (30) | 102 (30) |
|
79 |
+
| hep-js | Neutral | 677 (341) | 673 (339) | 251 (129) | 250 (128) | 93 (29) | 93 (29) |
|
80 |
+
| hep-python | Neutral | 618 (301) | 616 (300) | 212 (98) | 211 (98) | 86 (26) | 85 (26) |
|
81 |
+
| hep-rust | Neutral | 666 (391) | 660 (391) | 221 (132) | 219 (132) | 95 (29) | 95 (29) |
|
82 |
+
| llmbar-adver-GPTInst | False | 735 (578) | 1623 (1055) | 170 (135) | 377 (245) | 93 (59) | 179 (106) |
|
83 |
+
| llmbar-adver-GPTOut | Neutral | 378 (339) | 359 (319) | 96 (81) | 101 (94) | 60 (45) | 55 (41) |
|
84 |
+
| llmbar-adver-manual | False | 666 (584) | 1139 (866) | 160 (134) | 264 (194) | 92 (63) | 140 (90) |
|
85 |
+
| llmbar-adver-neighbor | False | 287 (297) | 712 (749) | 70 (76) | 173 (175) | 43 (31) | 91 (70) |
|
86 |
+
| llmbar-natural | Neutral | 553 (644) | 530 (597) | 139 (162) | 130 (140) | 75 (71) | 70 (62) |
|
87 |
+
| mt-bench-easy | False | 1563 (720) | 2129 (1520) | 377 (159) | 551 (415) | 166 (55) | 116 (62) |
|
88 |
+
| mt-bench-hard | False | 1225 (499) | 1471 (1016) | 284 (116) | 349 (234) | 131 (45) | 136 (58) |
|
89 |
+
| mt-bench-med | Neutral | 1558 (729) | 1733 (1312) | 377 (170) | 410 (311) | 162 (58) | 145 (88) |
|
90 |
+
| refusals-dangerous | False | 597 (81) | 1828 (547) | 131 (20) | 459 (136) | 90 (12) | 211 (50) |
|
91 |
+
| refusals-offensive | False | 365 (116) | 1092 (1146) | 82 (25) | 299 (278) | 64 (15) | 134 (101) |
|
92 |
+
| xstest-should-refuse | False | 584 (419) | 904 (493) | 129 (89) | 217 (115) | 81 (47) | 116 (53) |
|
93 |
+
| xstest-should-respond | True | 771 (420) | 466 (427) | 189 (105) | 107 (94) | 104 (48) | 67 (48) |
|
94 |
+
|
95 |
+
For more details, see the [dataset](https://huggingface.co/datasets/allenai/reward-bench).
|
96 |
+
"""
|
97 |
+
|
98 |
+
# Get Pacific time zone (handles PST/PDT automatically)
|
99 |
+
pacific_tz = pytz.timezone('America/Los_Angeles')
|
100 |
+
current_time = datetime.now(pacific_tz).strftime("%H:%M %Z, %d %b %Y")
|
101 |
+
|
102 |
+
TOP_TEXT = f"""# RewardBench: Evaluating Reward Models
|
103 |
+
### Evaluating the capabilities, safety, and pitfalls of reward models
|
104 |
+
[Code](https://github.com/allenai/reward-bench) | [Eval. Dataset](https://huggingface.co/datasets/allenai/reward-bench) | [Prior Test Sets](https://huggingface.co/datasets/allenai/pref-test-sets) | [Results](https://huggingface.co/datasets/allenai/reward-bench-results) | [Paper](https://arxiv.org/abs/2403.13787) | Total models: {{}} | * Unverified models | ⚠️ Dataset Contamination | Last restart (PST): {current_time}
|
105 |
+
"""
|
src/utils.py
CHANGED
@@ -72,6 +72,7 @@ def load_all_data(data_repo, subdir:str, subsubsets=False): # use HF api to p
|
|
72 |
|
73 |
|
74 |
def prep_df(df):
|
|
|
75 |
# sort columns alphabetically
|
76 |
df = df.reindex(sorted(df.columns), axis=1)
|
77 |
|
@@ -87,7 +88,7 @@ def prep_df(df):
|
|
87 |
# select all columns except "model" and convert to score
|
88 |
cols = df.columns.tolist()
|
89 |
cols.remove("model")
|
90 |
-
cols = [c for c in cols if "rank" not in c]
|
91 |
df[cols] = (df[cols]*100)
|
92 |
|
93 |
# move average column to the second
|
@@ -129,6 +130,7 @@ def prep_df(df):
|
|
129 |
def sort_by_category(df, category):
|
130 |
new_df = df.copy()
|
131 |
col_rank = category.lower().replace(" ", "_") + "_rank"
|
|
|
132 |
|
133 |
# sort
|
134 |
new_df = new_df.sort_values(by=[col_rank, category], ascending=[True, False])
|
@@ -144,12 +146,15 @@ def sort_by_category(df, category):
|
|
144 |
cols.insert(2, cols.pop(cols.index(category)))
|
145 |
new_df = new_df.loc[:, cols]
|
146 |
|
147 |
-
#
|
148 |
-
|
149 |
-
|
150 |
-
|
|
|
|
|
151 |
|
152 |
-
# drop all ranking
|
153 |
new_df = new_df.drop(columns=[c for c in new_df.columns if c.endswith("rank")])
|
|
|
154 |
|
155 |
return new_df
|
|
|
72 |
|
73 |
|
74 |
def prep_df(df):
|
75 |
+
|
76 |
# sort columns alphabetically
|
77 |
df = df.reindex(sorted(df.columns), axis=1)
|
78 |
|
|
|
88 |
# select all columns except "model" and convert to score
|
89 |
cols = df.columns.tolist()
|
90 |
cols.remove("model")
|
91 |
+
cols = [c for c in cols if "rank" not in c and "confi" not in c]
|
92 |
df[cols] = (df[cols]*100)
|
93 |
|
94 |
# move average column to the second
|
|
|
130 |
def sort_by_category(df, category):
|
131 |
new_df = df.copy()
|
132 |
col_rank = category.lower().replace(" ", "_") + "_rank"
|
133 |
+
col_confi = category.lower().replace(" ", "_") + "_confi"
|
134 |
|
135 |
# sort
|
136 |
new_df = new_df.sort_values(by=[col_rank, category], ascending=[True, False])
|
|
|
146 |
cols.insert(2, cols.pop(cols.index(category)))
|
147 |
new_df = new_df.loc[:, cols]
|
148 |
|
149 |
+
# move selected column to the fourth
|
150 |
+
cols = list(new_df.columns)
|
151 |
+
cols.insert(3, cols.pop(cols.index(col_confi)))
|
152 |
+
new_df = new_df.loc[:, cols]
|
153 |
+
new_df = new_df.rename(columns={col_conf: "95% CI"})
|
154 |
+
|
155 |
|
156 |
+
# drop all ranking and confidence interval
|
157 |
new_df = new_df.drop(columns=[c for c in new_df.columns if c.endswith("rank")])
|
158 |
+
new_df = new_df.drop(columns=[c for c in new_df.columns if c.endswith("confi")])
|
159 |
|
160 |
return new_df
|