natolambert
commited on
Commit
β’
f89f357
1
Parent(s):
bd17252
nits
Browse files
app.py
CHANGED
@@ -138,10 +138,24 @@ prefs_data = load_all_data(repo_dir_rewardbench, subdir="pref-sets").sort_values
|
|
138 |
|
139 |
rewardbench_data_avg = avg_over_rewardbench(rewardbench_data, prefs_data).sort_values(by='average', ascending=False)
|
140 |
|
141 |
-
|
142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
cols_rewardbench_data_length = ["markdown"] + ["number"] * (len(rewardbench_data_length.columns) - 1)
|
144 |
-
col_types_prefs = ["markdown"] + ["number"] * (len(prefs_data.columns) - 1)
|
145 |
# col_types_prefs_sub = ["markdown"] + ["number"] * (len(prefs_data_sub.columns) - 1)
|
146 |
|
147 |
# for showing random samples
|
@@ -175,36 +189,39 @@ def regex_table(dataframe, regex, filter_button):
|
|
175 |
# if filter_button, remove all rows with "ai2" in the model name
|
176 |
if isinstance(filter_button, list) or isinstance(filter_button, str):
|
177 |
if "AI2 Experiments" not in filter_button and ("ai2" not in regex):
|
178 |
-
dataframe = dataframe[~dataframe["
|
179 |
if "Seq. Classifiers" not in filter_button:
|
180 |
-
dataframe = dataframe[~dataframe["
|
181 |
if "DPO" not in filter_button:
|
182 |
-
dataframe = dataframe[~dataframe["
|
183 |
if "Custom Classifiers" not in filter_button:
|
184 |
-
dataframe = dataframe[~dataframe["
|
185 |
# Filter the dataframe such that 'model' contains any of the regex patterns
|
186 |
-
return dataframe[dataframe["
|
187 |
|
188 |
|
189 |
with gr.Blocks(css=custom_css) as app:
|
190 |
# create tabs for the app, moving the current table to one titled "rewardbench" and the benchmark_text to a tab called "About"
|
191 |
with gr.Row():
|
192 |
-
with gr.Column(scale=
|
193 |
# search = gr.Textbox(label="Model Search (delimit with , )", placeholder="Regex search for a model")
|
194 |
# filter_button = gr.Checkbox(label="Include AI2 training runs (or type ai2 above).", interactive=True)
|
195 |
# img = gr.Image(value="https://private-user-images.githubusercontent.com/10695622/310698241-24ed272a-0844-451f-b414-fde57478703e.png", width=500)
|
196 |
gr.Markdown("""
|
197 |
![](file/src/logo.png)
|
198 |
""")
|
199 |
-
with gr.Column(scale=
|
200 |
gr.Markdown(TOP_TEXT)
|
201 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
202 |
with gr.TabItem("π RewardBench Leaderboard"):
|
203 |
with gr.Row():
|
204 |
-
search_1 = gr.Textbox(label="Model Search (delimit with , )",
|
|
|
|
|
205 |
model_types_1 = gr.CheckboxGroup(["Seq. Classifiers", "DPO", "Custom Classifiers", "AI2 Experiments"],
|
206 |
value=["Seq. Classifiers", "DPO", "Custom Classifiers"],
|
207 |
label="Model Types",
|
|
|
208 |
# info="Which model types to include.",
|
209 |
)
|
210 |
with gr.Row():
|
@@ -225,10 +242,11 @@ with gr.Blocks(css=custom_css) as app:
|
|
225 |
|
226 |
with gr.TabItem("π RewardBench - Detailed"):
|
227 |
with gr.Row():
|
228 |
-
search_2 = gr.Textbox(label="Model Search (delimit with , )", placeholder="
|
229 |
model_types_2 = gr.CheckboxGroup(["Seq. Classifiers", "DPO", "Custom Classifiers", "AI2 Experiments"],
|
230 |
value=["Seq. Classifiers", "DPO", "Custom Classifiers"],
|
231 |
label="Model Types",
|
|
|
232 |
# info="Which model types to include."
|
233 |
)
|
234 |
with gr.Row():
|
@@ -264,10 +282,11 @@ with gr.Blocks(css=custom_css) as app:
|
|
264 |
# )
|
265 |
with gr.TabItem("Existing Test Sets"):
|
266 |
with gr.Row():
|
267 |
-
search_3 = gr.Textbox(label="Model Search (delimit with , )", placeholder="
|
268 |
model_types_3 = gr.CheckboxGroup(["Seq. Classifiers", "DPO", "Custom Classifiers", "AI2 Experiments"],
|
269 |
value=["Seq. Classifiers", "DPO", "Custom Classifiers"],
|
270 |
-
label="Model Types",
|
|
|
271 |
# info="Which model types to include.",
|
272 |
)
|
273 |
with gr.Row():
|
|
|
138 |
|
139 |
rewardbench_data_avg = avg_over_rewardbench(rewardbench_data, prefs_data).sort_values(by='average', ascending=False)
|
140 |
|
141 |
+
def prep_df(df):
|
142 |
+
# add column to 0th entry with count (column name itself empty)
|
143 |
+
df.insert(0, '', range(1, 1 + len(df)))
|
144 |
+
|
145 |
+
# replace "model" with "Model" and "model_type" with "Model Type" and "average" with "Average"
|
146 |
+
df = df.rename(columns={"model": "Model", "model_type": "Model Type", "average": "Average"})
|
147 |
+
return df
|
148 |
+
|
149 |
+
# add count column to all dataframes
|
150 |
+
rewardbench_data = prep_df(rewardbench_data)
|
151 |
+
rewardbench_data_avg = prep_df(rewardbench_data_avg)
|
152 |
+
rewardbench_data_length = prep_df(rewardbench_data_length)
|
153 |
+
prefs_data = prep_df(prefs_data)
|
154 |
+
|
155 |
+
col_types_rewardbench = ["number"] + ["markdown"] + ["str"] + ["number"] * (len(rewardbench_data.columns) - 1)
|
156 |
+
col_types_rewardbench_avg = ["number"] + ["markdown"]+ ["str"] + ["number"] * (len(rewardbench_data_avg.columns) - 1)
|
157 |
cols_rewardbench_data_length = ["markdown"] + ["number"] * (len(rewardbench_data_length.columns) - 1)
|
158 |
+
col_types_prefs = ["number"] + ["markdown"] + ["number"] * (len(prefs_data.columns) - 1)
|
159 |
# col_types_prefs_sub = ["markdown"] + ["number"] * (len(prefs_data_sub.columns) - 1)
|
160 |
|
161 |
# for showing random samples
|
|
|
189 |
# if filter_button, remove all rows with "ai2" in the model name
|
190 |
if isinstance(filter_button, list) or isinstance(filter_button, str):
|
191 |
if "AI2 Experiments" not in filter_button and ("ai2" not in regex):
|
192 |
+
dataframe = dataframe[~dataframe["Model"].str.contains("ai2", case=False, na=False)]
|
193 |
if "Seq. Classifiers" not in filter_button:
|
194 |
+
dataframe = dataframe[~dataframe["Model Type"].str.contains("Seq. Classifier", case=False, na=False)]
|
195 |
if "DPO" not in filter_button:
|
196 |
+
dataframe = dataframe[~dataframe["Model Type"].str.contains("DPO", case=False, na=False)]
|
197 |
if "Custom Classifiers" not in filter_button:
|
198 |
+
dataframe = dataframe[~dataframe["Model Type"].str.contains("Custom Classifier", case=False, na=False)]
|
199 |
# Filter the dataframe such that 'model' contains any of the regex patterns
|
200 |
+
return dataframe[dataframe["Model"].str.contains(combined_regex, case=False, na=False)]
|
201 |
|
202 |
|
203 |
with gr.Blocks(css=custom_css) as app:
|
204 |
# create tabs for the app, moving the current table to one titled "rewardbench" and the benchmark_text to a tab called "About"
|
205 |
with gr.Row():
|
206 |
+
with gr.Column(scale=3):
|
207 |
# search = gr.Textbox(label="Model Search (delimit with , )", placeholder="Regex search for a model")
|
208 |
# filter_button = gr.Checkbox(label="Include AI2 training runs (or type ai2 above).", interactive=True)
|
209 |
# img = gr.Image(value="https://private-user-images.githubusercontent.com/10695622/310698241-24ed272a-0844-451f-b414-fde57478703e.png", width=500)
|
210 |
gr.Markdown("""
|
211 |
![](file/src/logo.png)
|
212 |
""")
|
213 |
+
with gr.Column(scale=6):
|
214 |
gr.Markdown(TOP_TEXT)
|
215 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
216 |
with gr.TabItem("π RewardBench Leaderboard"):
|
217 |
with gr.Row():
|
218 |
+
search_1 = gr.Textbox(label="Model Search (delimit with , )",
|
219 |
+
placeholder="Model Search (delimit with , )",
|
220 |
+
show_label=False)
|
221 |
model_types_1 = gr.CheckboxGroup(["Seq. Classifiers", "DPO", "Custom Classifiers", "AI2 Experiments"],
|
222 |
value=["Seq. Classifiers", "DPO", "Custom Classifiers"],
|
223 |
label="Model Types",
|
224 |
+
show_label=False,
|
225 |
# info="Which model types to include.",
|
226 |
)
|
227 |
with gr.Row():
|
|
|
242 |
|
243 |
with gr.TabItem("π RewardBench - Detailed"):
|
244 |
with gr.Row():
|
245 |
+
search_2 = gr.Textbox(label="Model Search (delimit with , )", show_label=False, placeholder="Model Search (delimit with , )")
|
246 |
model_types_2 = gr.CheckboxGroup(["Seq. Classifiers", "DPO", "Custom Classifiers", "AI2 Experiments"],
|
247 |
value=["Seq. Classifiers", "DPO", "Custom Classifiers"],
|
248 |
label="Model Types",
|
249 |
+
show_label=False,
|
250 |
# info="Which model types to include."
|
251 |
)
|
252 |
with gr.Row():
|
|
|
282 |
# )
|
283 |
with gr.TabItem("Existing Test Sets"):
|
284 |
with gr.Row():
|
285 |
+
search_3 = gr.Textbox(label="Model Search (delimit with , )", show_label=False, placeholder="Model Search (delimit with , )")
|
286 |
model_types_3 = gr.CheckboxGroup(["Seq. Classifiers", "DPO", "Custom Classifiers", "AI2 Experiments"],
|
287 |
value=["Seq. Classifiers", "DPO", "Custom Classifiers"],
|
288 |
+
label="Model Types",
|
289 |
+
show_label=False,
|
290 |
# info="Which model types to include.",
|
291 |
)
|
292 |
with gr.Row():
|