Spaces:
Running
Running
natolambert
commited on
Commit
·
9ceb843
1
Parent(s):
b514443
update
Browse files- .gitignore +2 -0
- app.py +89 -105
- src/md.py +28 -0
- src/utils.py +60 -0
.gitignore
CHANGED
@@ -1 +1,3 @@
|
|
1 |
evals/
|
|
|
|
|
|
1 |
evals/
|
2 |
+
__pycache__/*
|
3 |
+
*.pyc
|
app.py
CHANGED
@@ -1,131 +1,115 @@
|
|
1 |
import gradio as gr
|
2 |
-
import pandas as pd
|
3 |
-
from pathlib import Path
|
4 |
-
from datasets import load_dataset
|
5 |
import os
|
6 |
-
from huggingface_hub import HfApi,
|
|
|
|
|
7 |
import numpy as np
|
8 |
|
9 |
api = HfApi()
|
10 |
|
11 |
COLLAB_TOKEN = os.environ.get("COLLAB_TOKEN")
|
12 |
evals_repo = "ai2-rlhf-collab/rm-benchmark-results"
|
13 |
-
|
|
|
|
|
|
|
14 |
# def restart_space():
|
15 |
# api.restart_space(repo_id="ai2-rlhf-collab/rm-benchmark-viewer", token=COLLAB_TOKEN)
|
16 |
|
17 |
|
18 |
-
# From Open LLM Leaderboard
|
19 |
-
def model_hyperlink(link, model_name):
|
20 |
-
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
|
21 |
|
22 |
print("Pulling evaluation results")
|
23 |
-
repo =
|
24 |
-
local_dir=
|
25 |
-
|
26 |
-
|
|
|
27 |
repo_type="dataset",
|
28 |
)
|
29 |
-
repo.git_pull()
|
30 |
-
|
31 |
-
# Define a function to fetch and process data
|
32 |
-
def fetch_and_display_data(): # use HF api to pull the git repo
|
33 |
-
dir = Path(BASE_DIR)
|
34 |
-
data_dir = dir / "data"
|
35 |
-
orgs = [d for d in os.listdir(data_dir) if os.path.isdir(os.path.join(data_dir, d))]
|
36 |
-
# get all files within the sub folders orgs
|
37 |
-
models_results = []
|
38 |
-
for org in orgs:
|
39 |
-
org_dir = data_dir / org
|
40 |
-
files = [f for f in os.listdir(org_dir) if os.path.isfile(os.path.join(org_dir, f))]
|
41 |
-
for file in files:
|
42 |
-
if file.endswith(".json"):
|
43 |
-
models_results.append(org + "/" + file)
|
44 |
-
|
45 |
-
# create empty dataframe to add all data to
|
46 |
-
df = pd.DataFrame()
|
47 |
-
|
48 |
-
# load all json data in the list models_results one by one to avoid not having the same entries
|
49 |
-
for model in models_results:
|
50 |
-
model_data = load_dataset("json", data_files=BASE_DIR + "data/" + model, split="train")
|
51 |
-
df2 = pd.DataFrame(model_data)
|
52 |
-
# add to df
|
53 |
-
df = pd.concat([df2, df])
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
# add
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
cols = list(df.columns)
|
78 |
-
cols.insert(1, cols.pop(cols.index('average')))
|
79 |
-
df = df.loc[:, cols]
|
80 |
-
return df
|
81 |
-
|
82 |
-
benchmark_text = """
|
83 |
-
# HERM Results Viewer
|
84 |
-
|
85 |
-
We compute the win percentage for a reward model on hand curated chosen-rejected pairs for each prompt.
|
86 |
-
A win is when the score for the chosen response is higher than the score for the rejected response.
|
87 |
-
|
88 |
-
### Subset summary
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
| alpacaeval-hard | 805 | Great model vs baseline model |
|
95 |
-
| mt-bench-easy | 28, 28 | MT Bench 10s vs 1s |
|
96 |
-
| mt-bench-medium | 45, 40 | MT Bench 9s vs 2-5s |
|
97 |
-
| mt-bench-hard | 45, 37 | MT Bench 7-8 vs 5-6 |
|
98 |
-
| refusals-dangerous | 505 | Dangerous response vs no response |
|
99 |
-
| refusals-offensive | 704 | Offensive response vs no response |
|
100 |
-
| llmbar-natural | 100 | (See [paper](https://arxiv.org/abs/2310.07641)) Manually curated instruction pairs |
|
101 |
-
| llmbar-adver-neighbor | 134 | (See [paper](https://arxiv.org/abs/2310.07641)) Instruction response vs. off-topic prompt response |
|
102 |
-
| llmbar-adver-GPTInst | 92 | (See [paper](https://arxiv.org/abs/2310.07641)) Instruction response vs. GPT4 generated off-topic prompt response |
|
103 |
-
| llmbar-adver-GPTOut | 47 | (See [paper](https://arxiv.org/abs/2310.07641)) Instruction response vs. unhelpful-prompted GPT4 responses |
|
104 |
-
| llmbar-adver-manual | 46 | (See [paper](https://arxiv.org/abs/2310.07641)) Challenge set chosen vs. rejected |
|
105 |
-
| XSTest | 450 | TODO curate |
|
106 |
-
| (?) repetitiveness | | |
|
107 |
-
| (?) grammar | | |
|
108 |
|
109 |
-
|
110 |
-
For more details, see the [dataset](https://huggingface.co/datasets/ai2-rlhf-collab/rm-benchmark-dev).
|
111 |
-
"""
|
112 |
-
leaderboard_data = fetch_and_display_data()
|
113 |
-
col_types = ["markdown"] + ["number"] * (len(leaderboard_data.columns) - 1)
|
114 |
with gr.Blocks() as app:
|
|
|
115 |
with gr.Row():
|
116 |
-
gr.Markdown(
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
# Load data when app starts
|
127 |
def load_data_on_start():
|
128 |
-
|
129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
app.launch()
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
import os
|
3 |
+
from huggingface_hub import HfApi, snapshot_download
|
4 |
+
from src.utils import load_all_data
|
5 |
+
from src.md import ABOUT_TEXT
|
6 |
import numpy as np
|
7 |
|
8 |
api = HfApi()
|
9 |
|
10 |
COLLAB_TOKEN = os.environ.get("COLLAB_TOKEN")
|
11 |
evals_repo = "ai2-rlhf-collab/rm-benchmark-results"
|
12 |
+
prefs_repo = "ai2-rlhf-collab/rm-testset-results"
|
13 |
+
repo_dir_herm = "./evals/herm/"
|
14 |
+
repo_dir_prefs = "./evals/prefs/"
|
15 |
+
|
16 |
# def restart_space():
|
17 |
# api.restart_space(repo_id="ai2-rlhf-collab/rm-benchmark-viewer", token=COLLAB_TOKEN)
|
18 |
|
19 |
|
|
|
|
|
|
|
20 |
|
21 |
print("Pulling evaluation results")
|
22 |
+
repo = snapshot_download(
|
23 |
+
local_dir=repo_dir_herm,
|
24 |
+
repo_id=evals_repo,
|
25 |
+
tqdm_class=None,
|
26 |
+
etag_timeout=30,
|
27 |
repo_type="dataset",
|
28 |
)
|
29 |
+
# repo.git_pull()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
repo_pref_sets = snapshot_download(
|
32 |
+
local_dir=repo_dir_prefs,
|
33 |
+
repo_id=prefs_repo,
|
34 |
+
use_auth_token=COLLAB_TOKEN,
|
35 |
+
tqdm_class=None,
|
36 |
+
etag_timeout=30,
|
37 |
+
repo_type="dataset",
|
38 |
+
)
|
39 |
+
# repo_pref_sets.git_pull()
|
40 |
+
|
41 |
+
def avg_over_herm(dataframe):
|
42 |
+
"""
|
43 |
+
Averages over the subsets alpacaeval, mt-bench, llmbar, refusals, hep and returns dataframe with only these columns.
|
44 |
+
"""
|
45 |
+
subsets = ["alpacaeval", "mt-bench", "llmbar", "refusals", "hep"]
|
46 |
+
# for each subset, avg the columns that have the subset in the column name, then add a new column with subset name and avg
|
47 |
+
for subset in subsets:
|
48 |
+
subset_cols = [col for col in dataframe.columns if subset in col]
|
49 |
+
dataframe[subset] = np.round(np.nanmean(dataframe[subset_cols].values, axis=1), 2)
|
50 |
+
|
51 |
+
keep_columns = ["model", "average"] + subsets
|
52 |
+
dataframe = dataframe[keep_columns]
|
53 |
+
# replace average column with new average
|
54 |
+
dataframe["average"] = np.round(np.nanmean(dataframe[subsets].values, axis=1), 2)
|
55 |
+
return dataframe
|
56 |
+
|
57 |
+
def expand_subsets(dataframe):
|
58 |
+
# TODO need to modify data/ script to do this
|
59 |
+
pass
|
60 |
|
61 |
+
herm_data = load_all_data(repo_dir_herm).sort_values(by='average', ascending=False)
|
62 |
+
herm_data_avg = avg_over_herm(herm_data).sort_values(by='average', ascending=False)
|
63 |
+
prefs_data = load_all_data(repo_dir_prefs).sort_values(by='average', ascending=False)
|
64 |
+
# prefs_data_sub = expand_subsets(prefs_data).sort_values(by='average', ascending=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
+
col_types_herm = ["markdown"] + ["number"] * (len(herm_data.columns) - 1)
|
67 |
+
col_types_herm_avg = ["markdown"] + ["number"] * (len(herm_data_avg.columns) - 1)
|
68 |
+
col_types_prefs = ["markdown"] + ["number"] * (len(prefs_data.columns) - 1)
|
69 |
+
# col_types_prefs_sub = ["markdown"] + ["number"] * (len(prefs_data_sub.columns) - 1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
|
|
|
|
|
|
|
|
|
|
71 |
with gr.Blocks() as app:
|
72 |
+
# create tabs for the app, moving the current table to one titled "HERM" and the benchmark_text to a tab called "About"
|
73 |
with gr.Row():
|
74 |
+
gr.Markdown("# HERM Results Viewer")
|
75 |
+
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
76 |
+
with gr.TabItem("HERM - Overview"):
|
77 |
+
with gr.Row():
|
78 |
+
herm_table = gr.Dataframe(
|
79 |
+
herm_data_avg.values,
|
80 |
+
datatype=col_types_herm_avg,
|
81 |
+
headers=herm_data_avg.columns.tolist(),
|
82 |
+
elem_id="herm_dataframe_avg",
|
83 |
+
)
|
84 |
+
with gr.TabItem("HERM - Detailed"):
|
85 |
+
with gr.Row():
|
86 |
+
herm_table = gr.Dataframe(
|
87 |
+
herm_data.values,
|
88 |
+
datatype=col_types_herm,
|
89 |
+
headers=herm_data.columns.tolist(),
|
90 |
+
elem_id="herm_dataframe",
|
91 |
+
)
|
92 |
+
with gr.TabItem("Pref Sets - Overview"):
|
93 |
+
pref_sets_table = gr.Dataframe(
|
94 |
+
prefs_data.values,
|
95 |
+
datatype=col_types_prefs,
|
96 |
+
headers=prefs_data.columns.tolist(),
|
97 |
+
elem_id="prefs_dataframe",
|
98 |
+
)
|
99 |
+
|
100 |
+
with gr.TabItem("About"):
|
101 |
+
with gr.Row():
|
102 |
+
gr.Markdown(ABOUT_TEXT)
|
103 |
+
|
104 |
# Load data when app starts
|
105 |
def load_data_on_start():
|
106 |
+
data_herm = load_all_data(repo_dir_herm)
|
107 |
+
herm_table.update(data_herm)
|
108 |
+
|
109 |
+
data_herm_avg = avg_over_herm(repo_dir_herm)
|
110 |
+
herm_table.update(data_herm_avg)
|
111 |
+
|
112 |
+
data_prefs = load_all_data(repo_dir_prefs)
|
113 |
+
pref_sets_table.update(data_prefs)
|
114 |
|
115 |
app.launch()
|
src/md.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
ABOUT_TEXT = """
|
2 |
+
We compute the win percentage for a reward model on hand curated chosen-rejected pairs for each prompt.
|
3 |
+
A win is when the score for the chosen response is higher than the score for the rejected response.
|
4 |
+
|
5 |
+
### Subset summary
|
6 |
+
|
7 |
+
| Subset | Num. Samples (Pre-filtering, post-filtering) | Description |
|
8 |
+
| :--------------------- | :------------------------------------------: | :---------------------------------------------------------------- |
|
9 |
+
| alpacaeval-easy | 805 | Great model vs poor model |
|
10 |
+
| alpacaeval-length | 805 | Good model vs low model, equal length |
|
11 |
+
| alpacaeval-hard | 805 | Great model vs baseline model |
|
12 |
+
| mt-bench-easy | 28, 28 | MT Bench 10s vs 1s |
|
13 |
+
| mt-bench-medium | 45, 40 | MT Bench 9s vs 2-5s |
|
14 |
+
| mt-bench-hard | 45, 37 | MT Bench 7-8 vs 5-6 |
|
15 |
+
| refusals-dangerous | 505 | Dangerous response vs no response |
|
16 |
+
| refusals-offensive | 704 | Offensive response vs no response |
|
17 |
+
| llmbar-natural | 100 | (See [paper](https://arxiv.org/abs/2310.07641)) Manually curated instruction pairs |
|
18 |
+
| llmbar-adver-neighbor | 134 | (See [paper](https://arxiv.org/abs/2310.07641)) Instruction response vs. off-topic prompt response |
|
19 |
+
| llmbar-adver-GPTInst | 92 | (See [paper](https://arxiv.org/abs/2310.07641)) Instruction response vs. GPT4 generated off-topic prompt response |
|
20 |
+
| llmbar-adver-GPTOut | 47 | (See [paper](https://arxiv.org/abs/2310.07641)) Instruction response vs. unhelpful-prompted GPT4 responses |
|
21 |
+
| llmbar-adver-manual | 46 | (See [paper](https://arxiv.org/abs/2310.07641)) Challenge set chosen vs. rejected |
|
22 |
+
| XSTest | 450 | TODO curate |
|
23 |
+
| (?) repetitiveness | | |
|
24 |
+
| (?) grammar | | |
|
25 |
+
|
26 |
+
|
27 |
+
For more details, see the [dataset](https://huggingface.co/datasets/ai2-rlhf-collab/rm-benchmark-dev).
|
28 |
+
"""
|
src/utils.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
from pathlib import Path
|
3 |
+
from datasets import load_dataset
|
4 |
+
import numpy as np
|
5 |
+
import os
|
6 |
+
|
7 |
+
# From Open LLM Leaderboard
|
8 |
+
def model_hyperlink(link, model_name):
|
9 |
+
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
|
10 |
+
|
11 |
+
# Define a function to fetch and process data
|
12 |
+
def load_all_data(data_repo, subsubsets=False): # use HF api to pull the git repo
|
13 |
+
dir = Path(data_repo)
|
14 |
+
data_dir = dir / "data"
|
15 |
+
orgs = [d for d in os.listdir(data_dir) if os.path.isdir(os.path.join(data_dir, d))]
|
16 |
+
# get all files within the sub folders orgs
|
17 |
+
models_results = []
|
18 |
+
for org in orgs:
|
19 |
+
org_dir = data_dir / org
|
20 |
+
files = [f for f in os.listdir(org_dir) if os.path.isfile(os.path.join(org_dir, f))]
|
21 |
+
for file in files:
|
22 |
+
if file.endswith(".json"):
|
23 |
+
models_results.append(org + "/" + file)
|
24 |
+
|
25 |
+
# create empty dataframe to add all data to
|
26 |
+
df = pd.DataFrame()
|
27 |
+
|
28 |
+
# load all json data in the list models_results one by one to avoid not having the same entries
|
29 |
+
for model in models_results:
|
30 |
+
model_data = load_dataset("json", data_files=data_repo + "data/" + model, split="train")
|
31 |
+
df2 = pd.DataFrame(model_data)
|
32 |
+
# add to df
|
33 |
+
df = pd.concat([df2, df])
|
34 |
+
|
35 |
+
|
36 |
+
# remove chat_template comlumn
|
37 |
+
df = df.drop(columns=["chat_template"])
|
38 |
+
|
39 |
+
# move column "model" to the front
|
40 |
+
cols = list(df.columns)
|
41 |
+
cols.insert(0, cols.pop(cols.index('model')))
|
42 |
+
df = df.loc[:, cols]
|
43 |
+
|
44 |
+
# select all columns except "model"
|
45 |
+
cols = df.columns.tolist()
|
46 |
+
cols.remove("model")
|
47 |
+
# round
|
48 |
+
df[cols] = df[cols].round(2)
|
49 |
+
avg = np.nanmean(df[cols].values,axis=1).round(2)
|
50 |
+
# add average column
|
51 |
+
df["average"] = avg
|
52 |
+
|
53 |
+
# apply model_hyperlink function to column "model"
|
54 |
+
df["model"] = df["model"].apply(lambda x: model_hyperlink(f"https://huggingface.co/{x}", x))
|
55 |
+
|
56 |
+
# move average column to the second
|
57 |
+
cols = list(df.columns)
|
58 |
+
cols.insert(1, cols.pop(cols.index('average')))
|
59 |
+
df = df.loc[:, cols]
|
60 |
+
return df
|