natolambert commited on
Commit
9ceb843
·
1 Parent(s): b514443
Files changed (4) hide show
  1. .gitignore +2 -0
  2. app.py +89 -105
  3. src/md.py +28 -0
  4. src/utils.py +60 -0
.gitignore CHANGED
@@ -1 +1,3 @@
1
  evals/
 
 
 
1
  evals/
2
+ __pycache__/*
3
+ *.pyc
app.py CHANGED
@@ -1,131 +1,115 @@
1
  import gradio as gr
2
- import pandas as pd
3
- from pathlib import Path
4
- from datasets import load_dataset
5
  import os
6
- from huggingface_hub import HfApi, Repository
 
 
7
  import numpy as np
8
 
9
  api = HfApi()
10
 
11
  COLLAB_TOKEN = os.environ.get("COLLAB_TOKEN")
12
  evals_repo = "ai2-rlhf-collab/rm-benchmark-results"
13
- BASE_DIR = "./evals/"
 
 
 
14
  # def restart_space():
15
  # api.restart_space(repo_id="ai2-rlhf-collab/rm-benchmark-viewer", token=COLLAB_TOKEN)
16
 
17
 
18
- # From Open LLM Leaderboard
19
- def model_hyperlink(link, model_name):
20
- return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
21
 
22
  print("Pulling evaluation results")
23
- repo = Repository(
24
- local_dir=BASE_DIR,
25
- clone_from=evals_repo,
26
- use_auth_token=COLLAB_TOKEN,
 
27
  repo_type="dataset",
28
  )
29
- repo.git_pull()
30
-
31
- # Define a function to fetch and process data
32
- def fetch_and_display_data(): # use HF api to pull the git repo
33
- dir = Path(BASE_DIR)
34
- data_dir = dir / "data"
35
- orgs = [d for d in os.listdir(data_dir) if os.path.isdir(os.path.join(data_dir, d))]
36
- # get all files within the sub folders orgs
37
- models_results = []
38
- for org in orgs:
39
- org_dir = data_dir / org
40
- files = [f for f in os.listdir(org_dir) if os.path.isfile(os.path.join(org_dir, f))]
41
- for file in files:
42
- if file.endswith(".json"):
43
- models_results.append(org + "/" + file)
44
-
45
- # create empty dataframe to add all data to
46
- df = pd.DataFrame()
47
-
48
- # load all json data in the list models_results one by one to avoid not having the same entries
49
- for model in models_results:
50
- model_data = load_dataset("json", data_files=BASE_DIR + "data/" + model, split="train")
51
- df2 = pd.DataFrame(model_data)
52
- # add to df
53
- df = pd.concat([df2, df])
54
 
55
-
56
- # remove chat_template comlumn
57
- df = df.drop(columns=["chat_template"])
58
-
59
- # move column "model" to the front
60
- cols = list(df.columns)
61
- cols.insert(0, cols.pop(cols.index('model')))
62
- df = df.loc[:, cols]
63
-
64
- # select all columns except "model"
65
- cols = df.columns.tolist()
66
- cols.remove("model")
67
- # round
68
- df[cols] = df[cols].round(2)
69
- avg = np.mean(df[cols].values,axis=1).round(2)
70
- # add average column
71
- df["average"] = avg
 
 
 
 
 
 
 
 
 
 
 
 
72
 
73
- # apply model_hyperlink function to column "model"
74
- df["model"] = df["model"].apply(lambda x: model_hyperlink(f"https://huggingface.co/{x}", x))
75
-
76
- # move average column to the second
77
- cols = list(df.columns)
78
- cols.insert(1, cols.pop(cols.index('average')))
79
- df = df.loc[:, cols]
80
- return df
81
-
82
- benchmark_text = """
83
- # HERM Results Viewer
84
-
85
- We compute the win percentage for a reward model on hand curated chosen-rejected pairs for each prompt.
86
- A win is when the score for the chosen response is higher than the score for the rejected response.
87
-
88
- ### Subset summary
89
 
90
- | Subset | Num. Samples (Pre-filtering, post-filtering) | Description |
91
- | :--------------------- | :------------------------------------------: | :---------------------------------------------------------------- |
92
- | alpacaeval-easy | 805 | Great model vs poor model |
93
- | alpacaeval-length | 805 | Good model vs low model, equal length |
94
- | alpacaeval-hard | 805 | Great model vs baseline model |
95
- | mt-bench-easy | 28, 28 | MT Bench 10s vs 1s |
96
- | mt-bench-medium | 45, 40 | MT Bench 9s vs 2-5s |
97
- | mt-bench-hard | 45, 37 | MT Bench 7-8 vs 5-6 |
98
- | refusals-dangerous | 505 | Dangerous response vs no response |
99
- | refusals-offensive | 704 | Offensive response vs no response |
100
- | llmbar-natural | 100 | (See [paper](https://arxiv.org/abs/2310.07641)) Manually curated instruction pairs |
101
- | llmbar-adver-neighbor | 134 | (See [paper](https://arxiv.org/abs/2310.07641)) Instruction response vs. off-topic prompt response |
102
- | llmbar-adver-GPTInst | 92 | (See [paper](https://arxiv.org/abs/2310.07641)) Instruction response vs. GPT4 generated off-topic prompt response |
103
- | llmbar-adver-GPTOut | 47 | (See [paper](https://arxiv.org/abs/2310.07641)) Instruction response vs. unhelpful-prompted GPT4 responses |
104
- | llmbar-adver-manual | 46 | (See [paper](https://arxiv.org/abs/2310.07641)) Challenge set chosen vs. rejected |
105
- | XSTest | 450 | TODO curate |
106
- | (?) repetitiveness | | |
107
- | (?) grammar | | |
108
 
109
-
110
- For more details, see the [dataset](https://huggingface.co/datasets/ai2-rlhf-collab/rm-benchmark-dev).
111
- """
112
- leaderboard_data = fetch_and_display_data()
113
- col_types = ["markdown"] + ["number"] * (len(leaderboard_data.columns) - 1)
114
  with gr.Blocks() as app:
 
115
  with gr.Row():
116
- gr.Markdown(benchmark_text)
117
-
118
- with gr.Row():
119
- output_table = gr.Dataframe(
120
- leaderboard_data.values,
121
- datatype=col_types,
122
- headers=leaderboard_data.columns.tolist(),
123
- elem_id="leaderboard_dataframe",
124
- )
125
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
126
  # Load data when app starts
127
  def load_data_on_start():
128
- data = fetch_and_display_data()
129
- output_table.update(data)
 
 
 
 
 
 
130
 
131
  app.launch()
 
1
  import gradio as gr
 
 
 
2
  import os
3
+ from huggingface_hub import HfApi, snapshot_download
4
+ from src.utils import load_all_data
5
+ from src.md import ABOUT_TEXT
6
  import numpy as np
7
 
8
  api = HfApi()
9
 
10
  COLLAB_TOKEN = os.environ.get("COLLAB_TOKEN")
11
  evals_repo = "ai2-rlhf-collab/rm-benchmark-results"
12
+ prefs_repo = "ai2-rlhf-collab/rm-testset-results"
13
+ repo_dir_herm = "./evals/herm/"
14
+ repo_dir_prefs = "./evals/prefs/"
15
+
16
  # def restart_space():
17
  # api.restart_space(repo_id="ai2-rlhf-collab/rm-benchmark-viewer", token=COLLAB_TOKEN)
18
 
19
 
 
 
 
20
 
21
  print("Pulling evaluation results")
22
+ repo = snapshot_download(
23
+ local_dir=repo_dir_herm,
24
+ repo_id=evals_repo,
25
+ tqdm_class=None,
26
+ etag_timeout=30,
27
  repo_type="dataset",
28
  )
29
+ # repo.git_pull()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
 
31
+ repo_pref_sets = snapshot_download(
32
+ local_dir=repo_dir_prefs,
33
+ repo_id=prefs_repo,
34
+ use_auth_token=COLLAB_TOKEN,
35
+ tqdm_class=None,
36
+ etag_timeout=30,
37
+ repo_type="dataset",
38
+ )
39
+ # repo_pref_sets.git_pull()
40
+
41
+ def avg_over_herm(dataframe):
42
+ """
43
+ Averages over the subsets alpacaeval, mt-bench, llmbar, refusals, hep and returns dataframe with only these columns.
44
+ """
45
+ subsets = ["alpacaeval", "mt-bench", "llmbar", "refusals", "hep"]
46
+ # for each subset, avg the columns that have the subset in the column name, then add a new column with subset name and avg
47
+ for subset in subsets:
48
+ subset_cols = [col for col in dataframe.columns if subset in col]
49
+ dataframe[subset] = np.round(np.nanmean(dataframe[subset_cols].values, axis=1), 2)
50
+
51
+ keep_columns = ["model", "average"] + subsets
52
+ dataframe = dataframe[keep_columns]
53
+ # replace average column with new average
54
+ dataframe["average"] = np.round(np.nanmean(dataframe[subsets].values, axis=1), 2)
55
+ return dataframe
56
+
57
+ def expand_subsets(dataframe):
58
+ # TODO need to modify data/ script to do this
59
+ pass
60
 
61
+ herm_data = load_all_data(repo_dir_herm).sort_values(by='average', ascending=False)
62
+ herm_data_avg = avg_over_herm(herm_data).sort_values(by='average', ascending=False)
63
+ prefs_data = load_all_data(repo_dir_prefs).sort_values(by='average', ascending=False)
64
+ # prefs_data_sub = expand_subsets(prefs_data).sort_values(by='average', ascending=False)
 
 
 
 
 
 
 
 
 
 
 
 
65
 
66
+ col_types_herm = ["markdown"] + ["number"] * (len(herm_data.columns) - 1)
67
+ col_types_herm_avg = ["markdown"] + ["number"] * (len(herm_data_avg.columns) - 1)
68
+ col_types_prefs = ["markdown"] + ["number"] * (len(prefs_data.columns) - 1)
69
+ # col_types_prefs_sub = ["markdown"] + ["number"] * (len(prefs_data_sub.columns) - 1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70
 
 
 
 
 
 
71
  with gr.Blocks() as app:
72
+ # create tabs for the app, moving the current table to one titled "HERM" and the benchmark_text to a tab called "About"
73
  with gr.Row():
74
+ gr.Markdown("# HERM Results Viewer")
75
+ with gr.Tabs(elem_classes="tab-buttons") as tabs:
76
+ with gr.TabItem("HERM - Overview"):
77
+ with gr.Row():
78
+ herm_table = gr.Dataframe(
79
+ herm_data_avg.values,
80
+ datatype=col_types_herm_avg,
81
+ headers=herm_data_avg.columns.tolist(),
82
+ elem_id="herm_dataframe_avg",
83
+ )
84
+ with gr.TabItem("HERM - Detailed"):
85
+ with gr.Row():
86
+ herm_table = gr.Dataframe(
87
+ herm_data.values,
88
+ datatype=col_types_herm,
89
+ headers=herm_data.columns.tolist(),
90
+ elem_id="herm_dataframe",
91
+ )
92
+ with gr.TabItem("Pref Sets - Overview"):
93
+ pref_sets_table = gr.Dataframe(
94
+ prefs_data.values,
95
+ datatype=col_types_prefs,
96
+ headers=prefs_data.columns.tolist(),
97
+ elem_id="prefs_dataframe",
98
+ )
99
+
100
+ with gr.TabItem("About"):
101
+ with gr.Row():
102
+ gr.Markdown(ABOUT_TEXT)
103
+
104
  # Load data when app starts
105
  def load_data_on_start():
106
+ data_herm = load_all_data(repo_dir_herm)
107
+ herm_table.update(data_herm)
108
+
109
+ data_herm_avg = avg_over_herm(repo_dir_herm)
110
+ herm_table.update(data_herm_avg)
111
+
112
+ data_prefs = load_all_data(repo_dir_prefs)
113
+ pref_sets_table.update(data_prefs)
114
 
115
  app.launch()
src/md.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ABOUT_TEXT = """
2
+ We compute the win percentage for a reward model on hand curated chosen-rejected pairs for each prompt.
3
+ A win is when the score for the chosen response is higher than the score for the rejected response.
4
+
5
+ ### Subset summary
6
+
7
+ | Subset | Num. Samples (Pre-filtering, post-filtering) | Description |
8
+ | :--------------------- | :------------------------------------------: | :---------------------------------------------------------------- |
9
+ | alpacaeval-easy | 805 | Great model vs poor model |
10
+ | alpacaeval-length | 805 | Good model vs low model, equal length |
11
+ | alpacaeval-hard | 805 | Great model vs baseline model |
12
+ | mt-bench-easy | 28, 28 | MT Bench 10s vs 1s |
13
+ | mt-bench-medium | 45, 40 | MT Bench 9s vs 2-5s |
14
+ | mt-bench-hard | 45, 37 | MT Bench 7-8 vs 5-6 |
15
+ | refusals-dangerous | 505 | Dangerous response vs no response |
16
+ | refusals-offensive | 704 | Offensive response vs no response |
17
+ | llmbar-natural | 100 | (See [paper](https://arxiv.org/abs/2310.07641)) Manually curated instruction pairs |
18
+ | llmbar-adver-neighbor | 134 | (See [paper](https://arxiv.org/abs/2310.07641)) Instruction response vs. off-topic prompt response |
19
+ | llmbar-adver-GPTInst | 92 | (See [paper](https://arxiv.org/abs/2310.07641)) Instruction response vs. GPT4 generated off-topic prompt response |
20
+ | llmbar-adver-GPTOut | 47 | (See [paper](https://arxiv.org/abs/2310.07641)) Instruction response vs. unhelpful-prompted GPT4 responses |
21
+ | llmbar-adver-manual | 46 | (See [paper](https://arxiv.org/abs/2310.07641)) Challenge set chosen vs. rejected |
22
+ | XSTest | 450 | TODO curate |
23
+ | (?) repetitiveness | | |
24
+ | (?) grammar | | |
25
+
26
+
27
+ For more details, see the [dataset](https://huggingface.co/datasets/ai2-rlhf-collab/rm-benchmark-dev).
28
+ """
src/utils.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ from pathlib import Path
3
+ from datasets import load_dataset
4
+ import numpy as np
5
+ import os
6
+
7
+ # From Open LLM Leaderboard
8
+ def model_hyperlink(link, model_name):
9
+ return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
10
+
11
+ # Define a function to fetch and process data
12
+ def load_all_data(data_repo, subsubsets=False): # use HF api to pull the git repo
13
+ dir = Path(data_repo)
14
+ data_dir = dir / "data"
15
+ orgs = [d for d in os.listdir(data_dir) if os.path.isdir(os.path.join(data_dir, d))]
16
+ # get all files within the sub folders orgs
17
+ models_results = []
18
+ for org in orgs:
19
+ org_dir = data_dir / org
20
+ files = [f for f in os.listdir(org_dir) if os.path.isfile(os.path.join(org_dir, f))]
21
+ for file in files:
22
+ if file.endswith(".json"):
23
+ models_results.append(org + "/" + file)
24
+
25
+ # create empty dataframe to add all data to
26
+ df = pd.DataFrame()
27
+
28
+ # load all json data in the list models_results one by one to avoid not having the same entries
29
+ for model in models_results:
30
+ model_data = load_dataset("json", data_files=data_repo + "data/" + model, split="train")
31
+ df2 = pd.DataFrame(model_data)
32
+ # add to df
33
+ df = pd.concat([df2, df])
34
+
35
+
36
+ # remove chat_template comlumn
37
+ df = df.drop(columns=["chat_template"])
38
+
39
+ # move column "model" to the front
40
+ cols = list(df.columns)
41
+ cols.insert(0, cols.pop(cols.index('model')))
42
+ df = df.loc[:, cols]
43
+
44
+ # select all columns except "model"
45
+ cols = df.columns.tolist()
46
+ cols.remove("model")
47
+ # round
48
+ df[cols] = df[cols].round(2)
49
+ avg = np.nanmean(df[cols].values,axis=1).round(2)
50
+ # add average column
51
+ df["average"] = avg
52
+
53
+ # apply model_hyperlink function to column "model"
54
+ df["model"] = df["model"].apply(lambda x: model_hyperlink(f"https://huggingface.co/{x}", x))
55
+
56
+ # move average column to the second
57
+ cols = list(df.columns)
58
+ cols.insert(1, cols.pop(cols.index('average')))
59
+ df = df.loc[:, cols]
60
+ return df