File size: 24,674 Bytes
e83d3d6 5366905 e83d3d6 5366905 e83d3d6 1a23e33 e83d3d6 caaf80c e83d3d6 344407b 93ef4d5 195942f 1a87ac9 93ef4d5 f6cc227 d17ac5b 50238de f6cc227 4817884 a0a9740 f6cc227 75fab0b ec73a31 c5fd5e5 ec73a31 c5fd5e5 ec73a31 d17ac5b f6cc227 344407b e83d3d6 5366905 e83d3d6 5366905 e83d3d6 5366905 e83d3d6 5366905 e83d3d6 5366905 e83d3d6 5366905 e83d3d6 5366905 e83d3d6 5366905 e83d3d6 5366905 e83d3d6 5366905 e83d3d6 5366905 e83d3d6 5366905 e83d3d6 5366905 e83d3d6 5366905 e83d3d6 5366905 e83d3d6 5366905 67792b1 5366905 e83d3d6 b19c065 ae66a58 dcaee4d ae66a58 75fab0b 344407b 75fab0b dcaee4d 75fab0b ae66a58 8f4ffcd 90a7f82 8f4ffcd cb8fa1a 8f4ffcd ae66a58 b19c065 ae66a58 b19c065 ae66a58 eade1a5 ae66a58 eade1a5 67792b1 8f4ffcd eade1a5 ae66a58 b19c065 e83d3d6 b19c065 344407b daa90fa 48c978d cb39ab0 48c978d 7885478 48c978d 7885478 48c978d cf6eea8 344407b b19c065 344407b b19c065 344407b b19c065 344407b 75fab0b 60eb8c9 75fab0b bb478f7 870cc69 75fab0b 344407b 1a23e33 f6cc227 eca759a f6cc227 acd5055 1a87ac9 f6cc227 75fab0b 1a87ac9 f6cc227 a0a9740 1a87ac9 34ab225 75fab0b 1a87ac9 f6cc227 a0a9740 75fab0b 93ef4d5 f6cc227 344407b 81ae1a7 dcaee4d 81ae1a7 773645f a0a9740 bb478f7 81ae1a7 a0a9740 bb478f7 81ae1a7 a0a9740 870cc69 81ae1a7 dcaee4d 344407b b19c065 bffd14d 7d3e9de bffd14d c572dd8 bffd14d b19c065 f7a8088 ec73a31 3b31e56 ec73a31 3b31e56 38e1e05 c0ec803 ec73a31 2c1e150 431462c 8db3924 431462c 3b31e56 ec73a31 2c1e150 ec73a31 2c1e150 ec73a31 2c1e150 3b31e56 2c1e150 3b31e56 c5fd5e5 2b13e72 bffd14d 431462c b19c065 bffd14d e5aeb44 b19c065 344407b e83d3d6 b19c065 e83d3d6 5366905 ae66a58 5366905 e83d3d6 42805da e83d3d6 42805da e83d3d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 |
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta name="description"
content="Demo Page of BEYOND ICML 2024.">
<meta name="keywords" content="BEYOND, Adversarial Examples, Adversarial Detection">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>Be Your Own Neighborhood: Detecting Adversarial Examples by the Neighborhood Relations Built on Self-Supervised Learning</title>
<link href="https://fonts.googleapis.com/css?family=Google+Sans|Noto+Sans|Castoro"
rel="stylesheet">
<link rel="stylesheet" href="./static/css/bulma.min.css">
<link rel="stylesheet" href="./static/css/bulma-carousel.min.css">
<link rel="stylesheet" href="./static/css/bulma-slider.min.css">
<link rel="stylesheet" href="./static/css/fontawesome.all.min.css">
<link rel="stylesheet"
href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css">
<link rel="stylesheet" href="./static/css/index.css">
<link rel="stylesheet" href="./static/css/custom.css">
<link rel="icon" href="./static/images/favicon.svg">
<!-- <script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script> -->
<script src="https://code.jquery.com/jquery-3.6.0.js"></script>
<script src="https://code.jquery.com/ui/1.13.2/jquery-ui.js"></script>
<script defer src="./static/js/fontawesome.all.min.js"></script>
<script src="./static/js/bulma-carousel.min.js"></script>
<script src="./static/js/bulma-slider.min.js"></script>
<script src="./static/js/index.js"></script>
<!-- for mathjax support -->
<!-- <script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script> -->
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
<script>
$(document).ready(function(){
$('#adaptive-loss-formula-list').on('click', 'a', function(e) {
e.preventDefault();
if (!$(this).hasClass('selected')) {
$('.formula-content').hide(200);
$('.formula-list > a').removeClass('selected');
$(this).addClass('selected');
var target = $(this).attr('href');
$(target).show(200);
}
});
$('#adaptive-dataset').on('click', 'a', function(e) {
e.preventDefault();
if (!$(this).hasClass('selected')) {
$('.interpolation-video-column').hide();
$('#adaptive-dataset > a').removeClass('selected');
$(this).addClass('selected');
var target = $(this).attr('href');
$(target).show();
}
});
})
</script>
<style type="text/css">
.tg {border-collapse:collapse;border-spacing:0;}
.tg td{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px;
overflow:hidden;padding:10px 5px;word-break:normal;}
.tg th{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px;
font-weight:normal;overflow:hidden;padding:10px 5px;word-break:normal;}
.tg .tg-baqh{text-align:center;vertical-align:top}
.tg .tg-amwm{font-weight:bold;text-align:center;vertical-align:top}
.tg .tg-2imo{font-style:italic;text-align:center;text-decoration:underline;vertical-align:top}
</style>
</head>
<body>
<section class="hero">
<div class="hero-body">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column has-text-centered">
<h1 class="title is-1 publication-title">Be Your Own Neighborhood: Detecting Adversarial Examples by the Neighborhood Relations Built on Self-Supervised Learning</h1>
<div class="is-size-5 publication-authors">
<span class="author-block">
<a href="#" target="_blank">Zhiyuan He</a><sup>1*</sup>,</span>
<span class="author-block">
<a href="https://yangyijune.github.io/" target="_blank">Yijun Yang</a><sup>1*</sup>,</span>
<span class="author-block">
<a href="https://sites.google.com/site/pinyuchenpage/home" target="_blank">Pin-Yu Chen</a><sup>2</sup>,
</span>
<span class="author-block">
<a href="https://cure-lab.github.io/" target="_blank">Qiang Xu</a><sup>1</sup>,
</span>
<span class="author-block">
<a href="https://tsungyiho.github.io/" target="_blank">Tsung-Yi Ho</a><sup>1</sup>,
</span>
</div>
<div class="is-size-5 publication-authors">
<span class="author-block"><sup>*</sup>Equal contribution,</span>
<span class="author-block"><sup>1</sup>The Chinese University of Hong Kong,</span>
<span class="author-block"><sup>2</sup>IBM Research</span>
</div>
<div class="column has-text-centered">
<div class="publication-links">
<!-- PDF Link. -->
<span class="link-block">
<a href="https://arxiv.org/abs/2209.00005" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fas fa-file-pdf"></i>
</span>
<span>Paper</span>
</a>
</span>
<span class="link-block">
<a href="https://arxiv.org/abs/2209.00005" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="ai ai-arxiv"></i>
</span>
<span>arXiv</span>
</a>
</span>
<!-- Video Link. -->
<!-- <span class="link-block">
<a href="https://www.youtube.com/watch?v=MrKrnHhk8IA" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fab fa-youtube"></i>
</span>
<span>Video</span>
</a>
</span> -->
<!-- Code Link. -->
<!-- <span class="link-block">
<a href="https://github.com/google/nerfies" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fab fa-github"></i>
</span>
<span>Code</span>
</a>
</span> -->
</div>
</div>
</div>
</div>
</div>
</div>
</section>
<!-- <section class="hero teaser">
<div class="container is-max-desktop">
<div class="hero-body">
<video id="teaser" autoplay muted loop playsinline height="100%">
<source src="./static/videos/teaser.mp4"
type="video/mp4">
</video>
<h2 class="subtitle has-text-centered">
<span class="dnerf">Nerfies</span> turns selfie videos from your phone into
free-viewpoint
portraits.
</h2>
</div>
</div>
</section> -->
<section class="section">
<div class="container is-max-desktop">
<!-- Abstract. -->
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Abstract</h2>
<div class="content has-text-justified">
<p>
Deep Neural Networks (DNNs) have achieved excellent performance in various fields. However, DNNs’ vulnerability to
Adversarial Examples (AE) hinders their deployments to safety-critical applications. In this paper, we present <strong>BEYOND</strong>,
an innovative AE detection frameworkdesigned for reliable predictions. BEYOND identifies AEs by distinguishing the AE’s
abnormal relation with its augmented versions, i.e. neighbors, from two prospects: representation similarity and label
consistency. An off-the-shelf Self-Supervised Learning (SSL) model is used to extract the representation and predict the
label for its highly informative representation capacity compared to supervised learning models. We found clean samples
maintain a high degree of representation similarity and label consistency relative to their neighbors, in contrast to AEs
which exhibit significant discrepancies. We explain this obser vation and show that leveraging this discrepancy BEYOND can
accurately detect AEs. Additionally, we develop a rigorous justification for the effectiveness of BEYOND. Furthermore, as a
plug-and-play model, BEYOND can easily cooperate with the Adversarial Trained Classifier (ATC), achieving state-of-the-art
(SOTA) robustness accuracy. Experimental results show that BEYOND outperforms baselines by a large margin, especially under
adaptive attacks. Empowered by the robust relationship built on SSL, we found that BEYOND outperforms baselines in terms
of both detection ability and speed.
</p>
</div>
</div>
</div>
<!--/ Abstract. -->
</div>
</section>
<!-- Relations -->
<section class="section">
<div class="container is-max-desktop">
<h2 class="title is-3">Neighborhood Relations of AEs and Clean Samples</h2>
<div class="columns is-centered">
<div class="column container-centered">
<img src="./static/images/relations.jpg" alt="Neighborhood Relations of Benign Examples and AEs"/>
<p>
<strong>Figure 1. Neighborhood Relations of AEs and Clean Samples.</strong>
</p>
</div>
</div>
<div class="columns is-centered">
<div class="column has-text-justified">
<p>
The previous method, Latent Neighbourhood Graph (LNG), represents the relationship between the input sample and the reference
sample as a graph, whose nodes are embeddings extracted by DNN and edges are built according to distances between the input node
and reference nodes, and train a graph neural network to detect AEs.
</p>
<p>
In this work, We explore the relationship between inputs and their test-time augmented neighbours. As shown in Figure. 1,
clean samples exhibit a stronger correlation with their neighbors in terms of label consistency and representation
similarity. In contrast, AEs are distinctly separated from their neighbors. According to this observation, we propose <strong>BEYOND</strong>
to detection adversarial examples.
</p>
</div>
</div>
</div>
</section>
<!-- Relations -->
<!-- Overview -->
<section class="section">
<div class="container is-max-desktop">
<h2 class="title is-3">Method Overview of BEYOND</h2>
<div class="columns is-centered">
<div class="column container-centered">
<img src="./static/images/overview.png" alt="Method Overview of BEYOND"/>
<p><strong>Figure 2. Overview of BEYOND.</strong> First, we augment the input image to obtain a bunch of its neighbors. Then, we
perform the label consistency detection mechanism on the classifier’s prediction of the input image and that of neighbors predicted by
SSL’s classification head. Meanwhile, the representation similarity mechanism employs cosine distance to measure the similarity among
the input image and its neighbors. Finally, The input image with poor label consistency or representation similarity is flagged as AE.</p>
</div>
</div>
</div>
</section>
<!-- Overview -->
<!-- Results -->
<section class="section">
<div class="container is-max-desktop">
<h2 class="title is-3">Detection Performance</h2>
<div class="columns is-centered">
<div class="column container-centered">
<table class="tg" border="1" style="width:100%;">
<caption><strong>Table 1.</strong>The Area Under the ROC Curve (AUC) of Different Adversarial Detection Approaches on CIFAR-10. LNG
is not open-sourced and the data comes from its report. To align with baselines, classifier: ResNet110, FGSM: ε = 0.05, PGD:
ε = 0.02. Note that BEYOND needs no AE for training, leading to the same value on both seen and unseen settings. The <strong>bold</strong> values
are the best performance, and the <u><i>underlined italicized</i></u> values are the second-best performanc</caption>
<thead>
<tr>
<th class="tg-amwm" rowspan="2">AUC(%)</th>
<th class="tg-baqh" colspan="4"><span style="font-weight:bold;font-style:italic">Unse</span><span style="font-weight:bold">e</span><span style="font-weight:bold;font-style:italic">n</span><span style="font-weight:bold">: </span>Attacks used in training are preclude from tests</th>
<th class="tg-baqh" colspan="5"><span style="font-weight:bold;font-style:italic">Seen</span><span style="font-weight:bold">:</span> Attacks used in training are included in tests</th>
</tr>
<tr>
<th class="tg-baqh">FGSM</th>
<th class="tg-baqh">PGD</th>
<th class="tg-baqh">AutoAttack</th>
<th class="tg-baqh">Square</th>
<th class="tg-baqh">FGSM</th>
<th class="tg-baqh">PGD</th>
<th class="tg-baqh">CW</th>
<th class="tg-baqh">AutoAttack</th>
<th class="tg-baqh">Square</th>
</tr>
</thead>
<tbody>
<tr>
<td class="tg-baqh">DkNN</td>
<td class="tg-baqh">61.55</td>
<td class="tg-baqh">51.22</td>
<td class="tg-baqh">52.12</td>
<td class="tg-baqh">59.46</td>
<td class="tg-baqh">61.55</td>
<td class="tg-baqh">51.22</td>
<td class="tg-baqh">61.52</td>
<td class="tg-baqh">52.12</td>
<td class="tg-baqh">59.46</td>
</tr>
<tr>
<td class="tg-baqh">kNN</td>
<td class="tg-baqh">61.83</td>
<td class="tg-baqh">54.52</td>
<td class="tg-baqh">52.67</td>
<td class="tg-baqh">73.39</td>
<td class="tg-baqh">61.83</td>
<td class="tg-baqh">54.52</td>
<td class="tg-baqh">62.23</td>
<td class="tg-baqh">52.67</td>
<td class="tg-baqh">73.39</td>
</tr>
<tr>
<td class="tg-baqh">LID</td>
<td class="tg-baqh">71.08</td>
<td class="tg-baqh">61.33</td>
<td class="tg-baqh">55.56</td>
<td class="tg-baqh">66.18</td>
<td class="tg-baqh">73.61</td>
<td class="tg-baqh">67.98</td>
<td class="tg-baqh">55.68</td>
<td class="tg-baqh">56.33</td>
<td class="tg-baqh">85.94</td>
</tr>
<tr>
<td class="tg-baqh">Hu</td>
<td class="tg-baqh">84.51</td>
<td class="tg-baqh">58.59</td>
<td class="tg-baqh">53.55</td>
<td class="tg-2imo">95.82</td>
<td class="tg-baqh">84.51</td>
<td class="tg-baqh">58.59</td>
<td class="tg-2imo">91.02</td>
<td class="tg-baqh">53.55</td>
<td class="tg-baqh">95.82</td>
</tr>
<tr>
<td class="tg-baqh">Mao</td>
<td class="tg-baqh">95.33</td>
<td class="tg-2imo">82.61</td>
<td class="tg-2imo">81.95</td>
<td class="tg-baqh">85.76</td>
<td class="tg-baqh">95.33</td>
<td class="tg-baqh">82.61</td>
<td class="tg-baqh">83.10</td>
<td class="tg-baqh">81.95</td>
<td class="tg-baqh">85.76</td>
</tr>
<tr>
<td class="tg-baqh">LNG</td>
<td class="tg-2imo">98.51 </td>
<td class="tg-baqh">63.14 </td>
<td class="tg-baqh">58.47 </td>
<td class="tg-baqh">94.71 </td>
<td class="tg-amwm">99.88 </td>
<td class="tg-2imo">91.39 </td>
<td class="tg-baqh">89.74 </td>
<td class="tg-2imo">84.03 </td>
<td class="tg-2imo">98.82 </td>
</tr>
<tr>
<td class="tg-baqh">BEYOND</td>
<td class="tg-amwm">98.89</td>
<td class="tg-amwm">99.28</td>
<td class="tg-amwm">99.16</td>
<td class="tg-amwm">99.27</td>
<td class="tg-2imo">98.89</td>
<td class="tg-amwm">99.28</td>
<td class="tg-amwm">99.20</td>
<td class="tg-amwm">99.16</td>
<td class="tg-amwm">99.27</td>
</tr>
</tbody>
</table>
</div>
</div>
</div>
</section>
<!-- Results -->
<!-- Adaptive Attack -->
<section class="section">
<div class="container is-max-desktop">
<h2 class="title is-3">Adaptive Attack</h2>
<div class="columns is-centered">
<div class="column container formula">
<p>
Attackers can design adaptive attacks to try to bypass BEYOND when the attacker knows all the parameters of the model
and the detection strategy. For an SSL model with a feature extractor <i>f</i>, a projector <i>h</i>, and a classification head <i>g</i>,
the classification branch can be formulated as <strong>C</strong>= <i>f</i> ° <i>g</i> and the representation branch as <strong>R</strong> = <i>f</i> ° <i>h</i>.
To attack effectively, the adversary must deceive the target model while guaranteeing the label consistency and representation similarity of the SSL model.
</div>
</div>
<div class="columns is-centered">
<div class="column container-centered">
<div id="adaptive-loss-formula" class="container">
<div id="adaptive-loss-formula-list" class="row align-items-center formula-list">
<a href=".label-loss" class="selected">Label Consistency Loss</a>
<a href=".representation-loss">Representation Similarity Loss</a>
<a href=".total-loss">Total Loss</a>
<div style="clear: both"></div>
</div>
<div class="row align-items-center adaptive-loss-formula-content">
<span class="formula label-loss formula-content">
$$
\displaystyle
Loss_{label} = \frac{1}{k} \sum_{i=1}^{k} \mathcal{L}\left(\mathbb{C}\left(W^i(x+\delta) \right), y_t\right)
$$
</span>
<span class="formula representation-loss formula-content" style="display: none;">
$$
\displaystyle
Loss_{repre} = \frac{1}{k} \sum_{i=1}^{k}\mathcal{S}(\mathbb{R}(W^i(x+\delta)), \mathbb{R}(x+\delta))
$$
</span>
<span class="formula total-loss formula-content" style="display: none;">
$$\displaystyle \mathcal{L}_C(x+\delta, y_t) + Loss_{label} - \alpha \cdot Loss_{repre}$$
</span>
</div>
</div>
</div>
</div>
<div class="columns is-centered">
<div class="column container adaptive-loss-formula-content">
<p class="formula label-loss formula-content">
where k represents the number of generated neighbors, <i>y</i><sub><i>t</i></sub> is the target class, and <strong><i>L</i></strong> is the cross entropy loss function.
</p>
<p class="formula representation-loss formula-content" style="display: none">
where k represents the number of generated neighbors, and <strong><i>S</i></strong> is the cosine similarity.
</p>
<p class="formula total-loss formula-content" style="display: none;">
where <strong><i>L</i></strong><sub>C</sub> indicates classifier's loss function, <i>y</i><sub><i>t</i></sub> is the targeted class, and α refers to a hyperparameter,
which is a trade-off parameter between label consistency and representation similarity..
</p>
</div>
</div>
<div class="columns is-centered">
<div class="column is-full-width">
<h3 class="title is-4">Performance of BEYOND against Adaptive Attacks</h3>
<div class="content has-text-justified">
<p>
We evaluate the detection performance of BEYOND against adaptive attacks on different datasets and show the ROC curves under different perturbation budgets as follows:
</p>
</div>
<div class="columns is-vcentered interpolation-panel">
<div id="adaptive-dataset" class="column is-3 align-items-center" style="width: 30%;">
<a href="#c10" class="selected">CIFAR-10</a>
<!-- <a href="#c100" class="selected">CIFAR-100</a> -->
<a href="#imgnet" >ImageNet</a>
<div style="clear: both"></div>
</div>
<div id="c10" class="column interpolation-video-column" style="width: 70%;">
<div id="c10-image-wrapper" >
Loading...
</div>
<input name="c10" class="slider is-full-width is-large is-info interpolation-slider"
step="1" min="0" max="6" value="0" type="range">
<label for="interpolation-slider"><strong>Perturbation Budget Ε</strong> from 2/255 to 128/255</label>
</div>
<!-- <div id="c100" class="column interpolation-video-column" style="width: 70%; display: none;">
<div id="c100-image-wrapper" >
Loading...
</div>
<input name="c100" class="slider is-full-width is-large is-info interpolation-slider"
step="1" min="0" max="6" value="0" type="range">
<label for="interpolation-slider"><strong>Perturbation Budget Ε</strong> from 2/255 to 128/255</label>
</div> -->
<div id="imgnet" class="column interpolation-video-column" style="width: 70%; display: none;">
<div id="imgnet-image-wrapper" >
Loading...
</div>
<input name="imgnet" class="slider is-full-width is-large is-info interpolation-slider"
step="1" min="0" max="6" value="0" type="range">
<label for="interpolation-slider"><strong>Perturbation Budget ε</strong> from 2/255 to 128/255</label>
</div>
</div>
<br/>
</div>
</div>
</section>
<!-- Adaptive Attack -->
<section class="section" id="BibTeX">
<div class="container is-max-desktop content">
<h2 class="title">BibTeX</h2>
<pre><code>@article{he2024beyond,
author = {Zhiyuan, He and Yijun, Yang and Pin-Yu, Chen and Qiang, Xu and Tsung-Yi, Ho},
title = {Be your own neighborhood: Detecting adversarial example by the neighborhood relations built on self-supervised learning},
journal = {ICML},
year = {2024},
}</code></pre>
</div>
</section>
<footer class="footer">
<div class="container">
<!-- <div class="content has-text-centered">
<a class="icon-link" target="_blank"
href="./static/videos/nerfies_paper.pdf">
<i class="fas fa-file-pdf"></i>
</a>
<a class="icon-link" href="https://github.com/keunhong" target="_blank" class="external-link" disabled>
<i class="fab fa-github"></i>
</a>
</div> -->
<div class="columns is-centered">
<div class="column is-8">
<div class="content">
<p>
This website is licensed under a <a rel="license" target="_blank"
href="http://creativecommons.org/licenses/by-sa/4.0/">Creative
Commons Attribution-ShareAlike 4.0 International License</a>.
</p>
<p>
This means you are free to borrow the <a target="_blank"
href="https://github.com/nerfies/nerfies.github.io">source code</a> of this website,
we just ask that you link back to this page in the footer.
Please remember to remove the analytics code included in the header of the website which
you do not want on your website.
</p>
</div>
</div>
</div>
</div>
</footer>
</body>
</html>
|